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ABSTRACT

Advances in the technology of optical devices such as
spatial light modulators (SLMs) have influenced the research
and growth of optical pattern recognition. In the research
leading to this report, the design of real-valued composite
filters that can be implemented using currently available SLMs
for optical pattern recognition and classification was
investigated.

The design of real-valued minimum average correlation
energy (RMACE) filter was investigated. Proper selection of
the phase of the output response was shown to reduce the
correlation energy. The performance of the filter was
evaluated using computer simulations and compared with the
complex filters. It was found that the performance degraded
only slightly.

Continuing the above investigation, the design of a real
filter that minimizes the output correlation energy and the
output variance due to noise was developed. Simulation

studies showed that this filter had better tolerance to
distortion and noise compared to that of the RMACEfilter.

Finally, the space domain design of RMACE filter was
developed and implemented on the computer. It was found that
the sharpness of the correlation peak was slightly reduced but
the filter design was more computationally efficient than the
complex filter.
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CHAPTER1

Introduction

Optical processors are attractive for many image

processing applications such as machine vision systems.

Because of their high speed, intrinsic real time parallel

processing capacity, and high throughput rate, several signal

processing operations such as Fourier Transform (FT),

convolution, correlation, and spectral analysis, can be

carried out using optical techniques more efficiently than

with their electronic counterparts [i].

However, using only optical processors, it is still

difficult to perform arithmetic computations and logic

operations and extract information and obtain the

interpretation of the data. So, for applications where real-

time operations are necessary, a hybrid optical-digital system

which makes use of the high speed operation of optics and the

flexibility of digital computers would be ideal. Also, hybrid

optical-digital systems give the optical system an increased

flexibility by allowing the use of more sophisticated software

algorithms. In such architectures, the'digital computers are

used to address the optical systems and give data and image

features of various formats. Thus, the proper combinations of

optical system operations and digital algorithms promise

1
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practical systems for general applications in robotics and

computer vision [2]. •

Optical processing can be broadly classified into two

areas [3]: Optical signal processing and Optical image

processing. In optical signal processing systems the signals

are often one-dimensional quantitative data: range, velocity,

acceleration, and so on, whereas in optical image processing

systems the outputs are two-dimensional functions. Operations

like FT and correlation are used in both signal and image

processing systems. Applications in the first area include

speech processing, biomedical signal processing, radar, and

sonar [3]. Military and space vision systems are the

applications in the optical image processing. This research

is concerned with the development of algorithms for optical

image processing in the field of pattern or object

recognition. First, some basic principles of optical pattern

recognition will briefly be reviewed.

i.i. Optical Pattern Recoqnition

Pattern recognition is the identification of a given

pattern or an object, frequently visual data within a mass of

extraneous signals/patterns. Considerable research has gone

into developing optical pattern recognition (OPR) systems for

military applications like identification of a target such as

a tank in a terrain, guidance of missile systems, and

reconnaissance [2]. Also, some limited success has been

achieved in developing systems for commercial applications
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such as autonomous robots, product inspection, computer

vision, and automatic analysis of areal photographs [3].

As mentioned before, the most flexible type of OPR system

combines optical devices and digital electronic computers into

an optical-digital hybrid system. A general optical-digital

architecture that includes digital preprocessing and

postprocessing is shown in Figure I.i. The electronic pre-

processor operates on the input objects and produces filters

that are used in the subsequent optical processing system.

The optical system performs the correlation operation and the

correlation plane output is processed by the digital post-
°.

processor to recognize the presence of the reference object

and determine its location in the scene.

There exists extensive literature describing many

different automated pattern recognition techniques. Almost

all of them fall into two broad categories: feature-based

methods and correlation-based methods [4]. Optical feature

extraction to pattern recognition is unique since it

represents a fixed optical system, with no variable filters

that can compute the features of any input object. The

optical feature extractors compute certain properties of an

input object, which are subsequently processed upon to

determine the class of the input object. Feature extractors

also provide the ability to determine the object's location,

orientation, and scale [4]. Feature-based matching techniques
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include various edge detection schemes and methods using

artificial intelligence principles.

However, these feature extractors are susceptible to

noise and also require segmentation before they can be

effectively used. Hence, as an alternative to feature

extraction, correlation-based pattern recognition techniques

have been developed [5].

In the correlation-based algorithms the brightness data

of the input object is directly compared with the brightness

data of a library of objects for recognition. The invention

of the holographic matched filter by VanderLugt [6] to perform

o

optical correlation can be called a milestone in optical

information processing. Also, the correlator represents a

quite powerful pattern recognition processor possessing such

desirable features as a large processing gain, the shift-

invariance, and the ability to handle multiple objects

simultaneously. This research is concerned with the design of

correlation-based pattern recognition processors.

1.2. Need for the Study

During the last few years many efforts have been made to

improve the correlation techniques to gain higher flexibility,

less sensitivity to object modifications, better signal

discrimination, and higher light efficiency. A correlation

filter must possess the following characteristics:

I. It must reject the noise in the input.
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2. It must produce sharp correlation peaks when the target

is present so that the target in the scene can be

recognized.

3. It must provide object orientation information•

4. It must be able to provide distortion-invariant pattern

classification.

5. Of course, ease of implementation would also be

desirable. Unfortunately, no single filter can provide

all the above.

Optical correlators such as matched spatial filters (MSF)

are extremely efficient in the sense that they provide the

maximum output signal-to-noise ratio (SNR) in detecting a

known reference signal in additive noise [6]. However, MSFs

for optical pattern recognition have three major limitations:

• Geometrical differences between the input and reference

objects degrade the performance of MSFs.

• MSFs are light-inefficient. That is, the ratio of the

output light power to input light power is only about 44

percent [7].

• Most available spatial light modulators (SLM) cannot

accommodate the complex frequency response of MSFs.

Light efficiency can be improved by using phase-only

filters (POF) since the frequency plane filter will then pass

all the incident light [8]. Real-time SLMs such as the

magneto-optic SLM (MOSLM)can be employed in the filter plane,

if the filters are binary phase-only filters (BPOF).
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The emphasis of this study is, however, designing filters

which are capable of providing distortion-invariant pattern

recognition. Several methods have been suggested to

introduce distortion tolerance in the optical correlators.

These include mutually orthogonal correlation filters [9],

Synthetic Discriminant Functions (SDF) [i0]-[ii], least square

linear mapping techniques [12], and circular harmonic

function-based filters [13].

The SDF, which is designed using a set of training images

that span the distortion space of interest, achieves the

distortion-invariance while retaining the process gain and the

shift-invariance property of the correlator [ii]. For each

training image, the SDF filter is constrained to yield a user

specified value at the origin of the correlation plane. Then

the image to be classified is correlated with the filter, and

the output correlation value at the origin of the two-

dimensional correlation image is compared to the reference

thresholds to classify the input image.

Traditionally, a SDF is designed from a linear

combination of input training images with weights

appropriately selected to satisfy the specified correlation

values at the origin. Even though, this filter achieves

distortion-invariance and shift-invariance, it cannot prevent

large sidelobe levels from occurring in the correlation plane.

Also, the design of these filters does not include the effects



of noise explicitly and hence,

performance.

8

they often have poor noise

In the recent past, several variations to SDFs have been

proposed. Two among them have received considerable notice:

the minimum variance synthetic discriminant function (MVSDF)

[14] and minimum average correlation energy (MACE) filters

[15]. The MVSDF is designed to minimize the effect of noise

in the input on the output variance while the MACE filter is

designed to minimize the average energy of the output

correlation plane to yield a sharp correlation peak. Also,

the design of MACE filter for the implementation in space

domain (SMACE filter) has recently been reported [16].

One difficulty at present with the MACE, SMACE, and MVSDF

filters is that they are complex in general, and hence, these

filters cannot be easily implemented in the currently

available SLMs. Purely real filters can overcome these

problems associated with the optical implementation [17]. The

design of a purely real MACEfilter in the discrete frequency

domain has recently been proposed [18]. However, in this

method, the input objects and the output response are assumed

to be real. Also, the properties of the real-valued filters,

and the performance of these filters in noisy scene have not

been studied.

The MACEfilter which is designed to minimize the average

correlation plane energy does not take the effect of noise

into account [15]. The problem of noise has been addressed in
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the design of MVSDF [14]; however, a sharp correlation peak is

not guaranteed in this approach. An improved filter in the

space domain which trades off between .the noise performance

and sharp correlation peak to facilitate the ease of detection

has been reported [16]. No studies have so far been carried

out on the real-valued frequency domain improved filters.

1.3. Objectives

In light of the above, the main objective of the research

reported was to develop and study the real-valued composite

filters for optical pattern recognition. More specifically,

this research had the following objectives:

i. To develop a real-valued MACE filter in the discrete

frequency domain and to evaluate its performance

characteristics. The effect of additive noise on the

performance of the filter were studied.

2. To develop a real MACE filter with a complex output

constraint to reduce further the correlation plane

energy•

3. To develop a real-valued MVSDF-MACE filter in the

discrete frequency domain to produce a sharp correlation

peak with a better noise performance than the MACE

filter•

To develop a space domain real MACE filter and to study

its performance.

The scope of this research was limited to the development

The purely real-

•

of correlation-based composite filters.



i0

valued MACEfilters were to be developed in both the discrete

frequency and space domains. The performance was to be

evaluated by using simulations on a digital computer. The

signals used were restricted to be real ones. The performance

of these filters were to be compared with that of the existing

complex filters. Also, a study on the effect of additive

stationary white, Gaussian noise on the performance of the

filters was to be conducted. The actual optical

implementation of these filters was not carried out.

1.4. Outline of the Report

The next chapter presents a brief historical background

of the current state of research in this field and a general

description of the algorithms being presently used. Chapter

3 discusses the development of the real-valued MACE filter.

Also, Chapter 3 shows how the specification of complex output

in the real-valued MACE filter can decrease the correlation

plane energy. A comparison of this filter with the original

complex MACE filter is also included. Chapter 4 presents the

development and simulation studies of the real-valued MVSDF-

MACE filter in the frequency domain. Finally, an alternative

space domain methodology for designing real MACE filters is

proposed and its performance studied in Chapter 5. Chapter 6

presents the conclusions of this research and recommendations

for future work.



CHAPTER2

Historical Background

As mentioned in Chapter i, image processing is a major

area of research in the field of optical information

processing. It is an important technology with many potential

applications in many systems such as space robotics, landmark

identification, and missile guidance systems. Pattern

recognition using optical techniques offer faster speed as

compared with its electronic counterparts because of the

massive parallelism of optics. Several methods of optical

pattern recognition have been proposed in the past [2, 18-20].

In this chapter a brief review of previous works on

correlation-based methods for

presented. First, the basic

correlator will be discussed.

pattern recognition is

principles of an optical

2.1. Optical Correlator

The realization of correlators using an optical system is

well documented in Reference [21]. Many other optical

information processing operations such as convolution can be

interpreted as correlation. Correlation of two input

functions fl(x,y) and f2(x,y) is given by

ii
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_(x,y) ®-f_2(x,y): ff-f_z(x/,/) _(xZ-x,/-y) dx/d/ (2.1)

where the symbol _denotes the correlation operation and '*'

denotes the conjugate operation and the limits of integration

extend the whole of x'-y' plane. The overbar notation as

f(x,y) is used for two-dimensional functions so that symbols

without bar can be used later for one-dimensional functions

and vectors. If the input functions are identical, then the

operation is called auto-correlation. The Fourier transform

(FT) of the correlation of two functions is the product of

their transforms (the symbol F{} denotes the Fourier transform

operation):

F(_(x,y) ®_(x,y) }= _(u,v) _(u,v) (2.2)

where

and

_(u,v) : E(_(x,y).}

-_2(u,v) = F {-f22(x ,y ) }
(2.3)

F{'-_zz (x,Y) ®-f_ ¢x,y) ) = I-F_l (u, v) I (2.4)

For recognition applications usually either the correlation

peak or the correlation value at (x = 0, y = 0) is measured.

In this case the important fact to note is that the peak

intensity of the normalized auto-correlation of a function is

always higher than or equal to its normalized cross-

correlation with any other function [4]. That is,
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Iff-_z(x,y) _(x,y) c_dyl 2 Iff-_2(x,y)_(x,y) dxdyl 2 (2.S)

ifl (x,y) Ifl (x,y) lcZxdy

Therefore in an optical correlation system the measured peak

intensity can be directly used to recognize a specific input

object.

In general, the implementation methods for the

correlation operation may be classified into two categories

[3]: processing in object space and processing in Fourier

space. The object space version is shown in Figure 2.1. This

scheme has many practical advantages due to the fact that the

necessary filter masks or transparencies are directly given by

the input and reference objects. However, the multiplication

operation required in this scheme makes this very slow and

impractical for many real time applications. Implementation

by processing in Fourier space is based on Eq. (2.2). The

ability of lenses to generate Fourier Transform (FT) of two-

dimensional data at the speed of light allows for very compact

optical correlation systems. Figure 2.2 shows the correlation

operation in Fourier space.

The concept of coherent optical correlation using a

matched spatial filter (MSF) also known as conjugate filter

was first introduced by VanderLugt _6]. Mathematically,

correlation and matched filtering under the assumption of

white noise equivalent operations. Although matched filtering

is the optimum detection scheme only for white noise, its
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performance is quite acceptable when the background is a

practical structural clutter or colored noise [22].

A classical optical correlation system for spatial

filtering is shown in Figure 2.3. This system works as

follows. The image of a test object fl(x,y) is placed in plane

P1 in the form of a transparency and is illuminated by a plane

wave of coherent light. The diffraction pattern formed is

focused by a spherical lens L1 which is placed at a distance

fL, equal to the focal length of the lens LI, from the image

plane. Lens L1 produces the two-dimensional spatial FT of the

pattern fl(x,y) on plane P2- Thus the light incident on plane

P2 is Fl(u,v). A transparency containing the optical filter

H(u,v) = F2*(u,v) produced from the" reference object or

pattern f2(x,y) is positioned in the plane P2" The

interaction between the filter and FT of the input pattern

produces the product of the two transforms. Thus, the light

distribution leaving P2 is Fl(U,v)F2*(u,v ). Finally, a second

lens L 2 produces the inverse FT of the product yielding the

correlation function onto the output plane P3- c(x,y), the

output in plane P3, is given by

c(x,y) = [[-_1(u,v) /_2(u,v) exp [j2_ (ux+ _:_ ) ] dudv

:
(2.6)

where '®' denotes the correlation operation. The spatial

frequencies (u,v) of the input object are related to the

distance in P2 by:
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(2.7)

where _ is the wave length of the input light and fL is the

focal length of the lens. This system is called a frequency

plane correlator or Fourier plane correlator because the

correlation function is performed by the multiplication in the

frequency plane. Hence, the matched filter represents exactly

the function required to obtain the correlation by spatial

filtering.

2.2.

As mentioned

Correlation-Based Filters

earlier, a common application of the

correlation operation is in the recognition of objects in the

input scene using a matched spatial filter (MSF). The MSF is

given by

_(u, v) = r(u, v) (2.8)

where H(u,v) is the filter function and X(u,v) is the

reference signal function in Fourier space and '*' indicates

the conjugate operation. The MSF yields the highest signal to

noise ratio (SNR) at the output when detecting known objects

corrupted by additive white noise [6]. However, for the MSF

the light efficiency defined as the ratio of the output light

power to the input light power is poor [7]. This is because

the filter gain is not uniform for all frequencies and so
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certain frequency components in the input image are attenuated

resulting in low light efficiency.

A pure phase correlation filter can have a light

efficiency of I00 percent in an optical correlation system.

It is given by [8]:

) = (2.9)
I (u, v) I

However, the performance of these filters degrade considerably

when the test objects are subjected to distortions such as

geometric transformations and sensor variations.

There are mainly two classes of spatial filters designed

to recognize distorted patterns. The first class of filters

deal with deterministic distortions .like scale changes,

rotation, and view angle differences. These distortions can

be represented by mathematical techniques using circular

harmonic functions [13] and 2-D image transformations [23-24].

Using these, distortion invariant filters can be designed.

Such is not the case with other distortions like out of

plane rotation and sensor variations.

a new class of filters, known as

functions (SDFs), has been proposed.

For these situations,

synthetic discriminant

The SDF is similar to

averaged filters [10,25], generalized Matched filters [26,27],

and composite filters [28,29]. The philosophy behind this

approach is as follows: a single composite filter is designed

to match one or more of the possible input objects and thus

obtain a suitable correlation function at the system output.
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The training set or the number of reference images required

must be sufficiently descriptive to include all possible

expected distortions. For recognition, each test object is

correlated with the composite filter. If the peak output

correlation exceeds the predetermined threshold value then the

object is recognized in the input scene, thereby requiring

only one cross correlation per input object.

Since the introduction of SDF in 1980, several variations

have been reported. Later sections of this chapter will

summarize some of them.

2.2.1. Conventional SDF [ii]

This is a generalized method to achieve a multi-object,

shift invariant, and distortion invariant pattern recognition

using correlators. This technique uses a SDF to form the

filter for use in the correlator. That is, a single filter is

constructed from a linear combination of weighted filters that

are matched to the different objects in the training set. In

this section the method of constructing the conventional SDF

is given.

Before discussing the method, a few words about the

notations used in this report are given. All image signals as

well as filter functions are assumed to be in discrete domain

and are represented either by vectors or by scalar functions.

Boldface letters are used to denote vectors and matrices and

lower case letters denote scalar quantities.
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Let xl,x2, ..... ,x N denote N column vectors of dimension

d representing N images, each with d pixels in it; that is,

x£ = [xi(1),xi(2), ..... xi(d)] T denotes the ith training signal

obtained from the ith image by a lexicographical ordering of

the rows of the image. Also, let h = [h(1),h(2),...h(d)] T

represent the filter function.

The conventional SDF filter vector h, which is a weighted

linear combination of the training vectors is given by

N

h = _ aix _ (2.10)
i-1

where the coefficients ai's of the linear combination are

chosen to satisfy the following deterministic constraints:

cj(o) : u_, j=i,2 ....... N (2.11)

where cj is the vector representation of the output of the

filter for the input image xj.

h'x_ = uj,

The above can be rewritten as

j=l,2 ...... ,N. (2.12)

The superscript ,T' denotes the transpose operation and uj is

the desired response of the filter at the origin for the

training image xj. As an example, when all training images

belong to a single class, then all uj _alues will be equal.

On the other hand uj will take two different values for a two

class problem.

To determine the coefficients ai,s , Eq. (2.10) can be

substituted into Eq. (2.12) as:
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N

aiCzfx ) --uj.
i'l

j=l,2, ...... N. (2.13)

The vector inner product xiTxj is the cross correlation at

zero shift between the ith and jth training images and is

denoted by

Ri9 : xfxj, i, j:l, 2 ....... N.

Then Eq. (2.13) can be expressed as:

(2.14)

where a = [al,a2, ..... ,aN] T is a (N×I) unknown coefficient

vector and u = [Ul,U2, ..... ,UN] T is the (NXI)output constraint

vector. R is the (N×N) symmetric vector inner product (VIP)

matrix with Rij as its (i,j) th element. If the VIP matrix R

is invertible, then vector 'a' can be obtained as:

a = R-Zu.

It is necessary that R be a matrix of full rank for it to be

invertible. R will be of full rank if and only if the

original N training images Xl,X2, ..... ,x N form a linearly

independent set of vectors [ii].

Let X s denote a matrix with d rows and N columns with its

ith column as xi: X s = [Xl,X2, .... ,xN]. In terms of this

space domain data matrix Xs, the SDF composite vector h is

given as:

a = x.a (2.1_)

(2.16)

xa = u (2.1s)



where the coefficient vector 'a' must satisfy

(xlxo) a = u.
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(2.18)

Substituting Eq. (2.18) into Eq. (2.17) the expression for the

conventional SDF can be obtained as:

_,= Xo (XIXo) -_u. (2.19)

2.2.1.1. Intra-Class SDF The objective of an intra-

class SDF is to select h such that it has the same correlation

value at the origin with all N input training images. That is,

h = X. (XIX a) -I u (2.20)

where u = [c,c, .... ,c] T, and c is a constant. Thus, the

filter h in Eq. (2.20) is capable of recognizing objects of a

particular class. It is also known as equal correlation peak

(ECP) filter. The same idea can be extended for an inter-class

pattern recognition problem.

2.2.1.2. Inter-Class SDF Consider an inter-class

pattern recognition problem where M different objects belong

to M different classes. So it is required to synthesize M

different filters, hl,h2, ..... ,h M such that

_IXl = C6ij, i,j=l,2 ....... S. (2.21)
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Thus for a particular input image only one of the M SDFs

yields an output of c whereas all (M-l) other SDFs yield zero

output. The filter with the output of c determines the class

of the input object.

Each of the M SDFs can be described as a different

weighted linear combination of all M training set images:

M

h I = _ ali xi
i=1

M

= _ a2i x i ....

iml

(2.22)

By combining Eqs. (2.21) and (2.22), the following equations

are obtained:

Ra I = u I = [c,O, .... O] T,

R_ : _ = [0,c, .... 0IT,

Ra.= uH= [0,0, .... c] z

(2.23)

Thus, the filter h I yields an output c for the image x I and

zero for all the other images and so on. The filter vectors

hi, i =1,2, .... M, is given by

h, : Xo (xlx.)1 u, (2.24)

where u£ is a vector of size M, with c as its i th element and

zeros elsewhere.
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2.2.1.3. Inter-Class-Intra-Class SDF This is a

combination of intra-class ECP SDF and the inter-class SDF.

Consider the case of M different classes with N objects in

each of them. Then it is required to have M filter vectors to

satisfy,

Xki_h j = Ci_ _ , i=I,2 ..... N, j,k=l,2 ..... S. (2.25)

The SDFs can be obtained as:

and so on

(2.26)

where ui's are vectors of size MN given as:

u I = [Cl,Cl, ,cl:0,0 , ,0: "0,0, ,0] T• .o. 0.0o oeooooee. .0o0 ,

U 2 = [0,0, ,0:C2,C2, ,C 2" "0,0, ,0] T• ..e .... ..oe...... 0.0. ,

eoooee

and

uM = [0,0, .... ,0:0,0, .... ,0: ........ :CM,CM, .... ,CM] T.

Riggins and Butler [30] implemented the above

conventional SDF using a computer generated hologram encoding

and reported positive results. However, there are some

practical problems in using this filter for OPR. First, the

conventional SDF assumes that the filter function is a linear

combination of the training images (as in Eq. (2.10)). This

assumption is useful when SDFs are synthesized in an optical

laboratory using multiple exposure techniques. However,
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nowadays the SDFs are synthesized on digital computers. Thus,

filters can be designed by removing this unnecessary

restriction. Also, the original SDF design does not consider

noise in the input. In the presence of noise the output

values will not be exactly the required values even for

training images. Thus, filters capable of tolerating input

noise are necessary. These have led to the development of

Minimum Variance Synthetic Discriminant Function (MVSDF) [14]

which is designed to maximize noise tolerance. This is

discussed in the next section.

Second, the conventional SDF controls the output at only

one point, the origin, in the correlation output. Correlators

are attractive because they can detect as well as locate an

object, in the input scene. If the input object is shifted by

a certain unknown distance from the origin, the peak

correlation output is also shifted by that distance. The

values at the origin thus moved by the unknown distance.

However, in the presence of noise, other values in the output

correlation plane may produce larger peaks. Hence, it is

impossible to locate the shifted origin in the presence of

even small amounts of noise. Thus, it is desirable to produce

correlation peaks that are extremely sharp. In this chapter

SDFs designed with this goal are also discussed.
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2.2.2. Minimum Variance

Synthetic Discriminant

Function [14]

The Minimum Variance Synthetic Discriminant Function

(MVSDF) is synthesized by minimizing the output variance due

to noise in the input [14]. Consider the situation when the

image x i being tested is corrupted by an additive noise vector

n. Then the correlation output value is given by

v= h_ (x_ + n)

= ui+hTn (2.27)

= ui+y, i=1,2, ..... N

where h is designed to satisfy Eq. (2.11). The output v is

the desired output ui, corrupted by the random variable hTn

which is denoted by y. The MVSDF attempts to design h such

that the variance in the output due to input noise is

minimized while satisfying the constraints in Eq. (2.12).

Let n be a zero mean noise vector with a d×d covariance

matrix R.. Then

E{y} = 0

and

Vat(y} = E{ (h_n) 2}

= E{hTnnTh)

2 = hTRah.ay

(2.28)

A small _y2 will ensure that the output values are close to

the desired values even in the presence of noise. Minimizing
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Oy2 in Eq. (2.28) subject to the constraints in Eq. (2.12)

leads to the following MVSDF [14],

(2.29)

For the special case of white noise, R n = o21d, where I d

is an identity matrix of size d×d and o 2 is the power of the

white noise. Then Eq. (2.29) reduces to Eq. (2.19). Thus the

conventional SDF achieves the smallest output variance when

the input noise is white. But for other types of noise, the

conventional SDF is not the optimal SDF. Vijaya Kumar [31]

considered the special case of input Markov noise. For this

special case, R n is a Toeplitz matrix and can be easily

inverted.

The minimal achievable output noise variance can be

obtained by substituting Eq. (2.29) into Eq. (2.28). The

resulting variance is given by

2
o_n = [a_*x, (xla_*x,) *u] fro [a_ xo (xla_*x,)-iu](2.30)

= u" <xlx_*xo) lu

It is interesting to see that the minimal achievable

variance depends on the constraint vector u. It has been

shown that the output noise variance can further be reduced by

selecting the phase values of the constraint in an optimal

manner [32]. When these filters are used in the optical

correlator, the output intensities are used for detection
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purposes. Thus suitable phase choices can be made without

affecting the magnitudes but minimizing the noise variance.

2.2.3. Minimum Averaqe

Correlation Enerqy

(MACE) Filter [15]

The MVSDF is optimal from the noise tolerance

considerations; however, the MVSDF controls the response at

only one point in the output correlation plane. Thus, large

sidelobes in the correlation may degrade its performance. For

good detection and location accuracy, the filters must be

capable of producing sharp peaks. The MACE filter is designed

to produce sharp correlation peaks which allow easy detection

[15]. The MACE filter is designed in the discrete frequency

domain.

Let the two-dimensional discrete Fourier Transform (DFT)

of the ith image xi be Xi, given by

M M

_/(kl,ks) = _ _ _/(n1,ns)exp(-2j=((kl- _) (n1-1)+(ks-1)(ns-l))}

hi= 1 n2= 1 S

1 _k I,k s_M.

(2.31)

Let the d dimensional vectors Xi, i = 1,2,...,N, denote the

one-dimensional equivalence of the images Xi and the vector H

of size d denote the filter function H in the discrete

frequency domain. The output of the ith image Xi with the

filter H is given by,

g--_(nl,n2) = IDFT{X-_(kl,k _) H(kl, _) ), i=i, 2 ...... N.
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To achieve good detection, it is necessary to reduce the

output level at all points in the correlation plane except at

the origin where the necessary constraint must be met. This

is equivalent to minimizing the correlation plane energy while

simultaneously satisfying the constraint at the origin:

-

M M

1

ki=1 k2=l

M 2

1

M 2_ X i(k) H(k)
k_l

i=i,2, ..... N

where the superscript 'T' denotes the transpose operation. If

xiTH is required to be ui, then

XTH= M2_/(0,0) = u i, i=I,2 ..... ,N.

Now combining the condition for i = 1,2,...,N,

XrH = U (2.32)

where X = [Xl,X 2, ........ XN] is the frequency domain data

matrix and u is the output vector defined earlier.

The average correlation plane energy is,
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1 i i i
i=1 =

N

. H'DiH

(2._3)

where D i is a d×ddiagonal matrix with elements

Di(k,k ) = IXi(k) 12/d

and the superscript _+' denotes the conjugate transpose

operation.

Let

N

D--! Di
N i-I

Then Eq. (2.33) reduces to

Ear = H* DH. (2.34)

Minimizing Ear in Eq. (2.34) subject to the constraints in

Eq. (2.32) leads to the filter:

Hmc x = D -_X (X TD-Z X) -iu. (2.3s)

It has been found that MACE filters are more sensitive to

the non-training image views than other composite filters

[33]. This is perhaps due to the fact that MACE filters favor

producing sharp correlation peaks thereby emphasizing the high

frequencies. A filter designed to produce broad Gaussian-
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shaped correlation peaks rather than a sharp delta function

reduces this problem of MACEfilters [34]. In addition, MACE

filters have not been designed to have low noise tolerance.

When correlation is performed using DFT, the output is a

circular correlation rather than linear correlation [16].

However, in a practical implementation using optical lenses,

linear correlation rather than circular correlation is

performed and so the energy of the linear correlation output

needs to be minimized for optimal filter design. In the next

section the design of MACE filter in the space domain (SMACE)

in order to minimize directly the linear correlation energy is

discussed.

2.2.4. SMACE Filter [16]

This filter is designed to minimize the average

correlation energy in the space domain while satisfying the

output constraints in Eq. (2.12). Let h denote the SMACE

filter in the space domain. The size of the image is assumed

to be M×Mand M 2 = d. The convolution of the training image x i

with h is given by the K = (2M - 1) 2 dimensional vector as

g_ = S_h, i=I,2 ....... N, (2.36)

where S i is a real matrix of size K×d obtained from the

signal x i as
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8i =

o ... o _

o ... ,_ _,_

_,_,... _' o

_,_'o ... o

The real matrices @i I,

i =1,2 ....... N. (2.37)

1 = 1,2, .... (2M-I) are given by

_,=

0 ... 0 x i (M(I-I) +I)

0 ... xi(M(l-l)+l) xi(M(l-l)+2)

:. ".. : :

xi(M(l-l)+l) xi(M(l-i )+2) .. xi(M(I-I)+M)

x i (M(I-I) +2) ... x i (M(I-'I) +M9 0

: ... : :

x_ (M(I-I) +M9 0 ... 0

i =1,2, ...... ,N.

(2.38)

The energy in the ith response output is given by giTgi .

Then the average energy is given by,

N

E_v- NI_..h'SfS_h

= hTR, h

(2.39)

where
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N

a, = 1--_ sf sx. (2.40)
N i.z

When Eav in Eq. (2.40) is minimized subject to the constraints

in Eq. (2.11), the space domain filter function can be

computed as [16]:

hs_= = a_Xo (xIa_*Xo) iu (2.4z)

where X, is the data matrix in space domain.

The R s matrix in Eq. (2.41) in general is not a diagonal

matrix, whereas the D matrix in the frequency domain MACE

filter is a diagonal matrix. Thus the computational

complexity in finding the inverse of R s is higher. But the

special block Toeplitz structure of the matrix R s may be used

to reduce the complexity of the inversion.

Both frequency and space domain MACE filter designs,

however, do not take noise tolerance into consideration. This

led to the subsequent development of an improved filter [16]

discussed next.

2.2.5. MVSDF-MACE Filter [16]

The MVSDF is designed to maximize noise tolerance,

whereas the MACE filter maximizes the peak sharpness. In

reality both these criteria are important. A compromise

measure between these two can be written from the noise

variance G 2 in Eq. (2.28) and the average correlation plane

energy Ear in Eq. (2.39) as:
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CM = _1 _av + _2 (_2

= alhTRah+a2hrR.h

= hT(aiR,+azR.) h

(2.42)

where ul and G2 are nonnegative constants which are to be

chosen such that a compromise between the relative importance

of noise tolerance and the sharp correlation peak is achieved.

For large values of u2/al, C s is dominated by _2 O2 and noise

tolerance will be emphasized. For small _2/_I values, _IEav

dominates Cs and the peak sharpness will be maximized. For

other values of u2/Ul the filter response will be in between

the two extremes.

Minimization of C s in Eq. (2.42) subject to the usual

constraints in Eq. (2.12) leads to the improved filter:

hzj_xov_ : (aIR,+_2R,)-IX,(X_ (_IR,+a2R,)-IX,}-Iu. (2.43)

When _2 _ 0, h approaches hSMAC E in Eq. (2.41) and as _2 _ _, h

approaches hMVSD F in Eq. (2.29).

An extension of the conventional SDF, namely correlation

SDF [35], has also been reported. This filter is designed to

control the sidelobe levels and the shape of the output

correlation as well as its peak intensity. Bahri and Vijaya

Kumar proposed a generalized SDF which completely

characterizes all the possible solutions to the conventional

SDF problems [36]. A general h capable of satisfying Eq.

(2.12) is given as follows [34]:
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h = x. C2.44)

where I d is a d×d identity matrix and z is column vector with

d entries. It can be verified that when z = 0, the solution

vector in Eq. (2.44) is the conventional SDF. Also, two

popular variations of the conventional SDF, namely MVSDF and

MACE filters can be seen as special cases of the generalized

SDF [36]. Sudharsanan, Mahalanobis, and Sundareshan proposed

a method for the selection of optimal output constraint values

by minimizing the probability of error (POE) in detection

[37].

Much of the discussion so far is focused on the use of

single composite filter. It is unrealistic to expect a single

filter, however well designed, to give the necessary

performance. With ever increasing speeds of the SLMs and

output detectors, it should be possible to test an input

object against multiple filters in real-time. Hence, the

design of multiple filters for a multi-class pattern

recognition problem or multistage high order filters for

specific output results would be valuable. References [38-42]

discuss the design of multiple filters for pattern

recognition.

The importance of being able to design partial

information (e.g., phase-only and binary phase-only) SDFs is

well recognized and several attempts have been made to design

such filters. In Reference [43], Vijaya Kumar briefly

outlines some of this work.
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2.3. Summary

The discussion in this chapter was focused on different

correlation-based composite filters for pattern recognition

and parameter estimation. In this report the development of

real filters for the same purpose is studied. In the

following chapter, the development of real MACE filter, its

properties, together with the comparison of its performance

with the complex MACE and the conventional filters are

discussed.
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Real-Valued MACE Filter

In the past, several methods have been suggested to

introduce distortion tolerance in the filter design. The most

well-known method is the use of the synthetic discriminant

function [ii] (SDF) and its variations [14-16]. The

conventional SDF has been shown to achieve distortion

invariance; however, this filter results in large sidelobe

levels in the correlation plane. This is due to the fact that

the input object usually has cross correlation with the images

in the training set. But, for good detection and location

accuracy, the filters should be capable of producing sharp

correlation peaks. The minimum average correlation energy

(MACE) filter is designed to achieve this objective. In this

chapter the development of real-valued MACE filters and its

performance are presented.

3.1. Need for Real-Valued MACE Filter

The MACE filter usually has complex-valued frequency

response. For realizing complex functions holograms are

required. Two types of holograms are commonly-used. They are

optically produced holograms and computer generated holograms.

Optically produced holograms cannot generate the desired phase

variation. Hence most often, the only alternative is to use

some form of computer generated holograms. Many different

37
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methods for encoding a complex function onto a computer

generated mask have been devised [44]-[45]. ' In all these

cases the space-bandwidth product available is limited by the

display or plotting device used to produce the computer

generated holograms. In addition real-time applications, such

as landmark identification, require cycling of multiple

filters through the correlators at very high speeds. Hence,

it might be impractical to design holograms on-line for

portable optical systems.

The advent of spatial light modulators (SLMs), which

could be interfaced with digital computers, has made it

possible to correlate an input object with a large number of

filters at video rates. However, most commonly available

optical spatial light modulators (SLMs) cannot encode fully

complex functions. Instead, they can accommodate phase-only,

amplitude-only, or phase-mostly functions. But optical setups

that use two SLMs to encode complex functions has been under

the investigation. Hence, by designing real filters,

currently available SLMs can be used to encode the filters

without the use of holographic techniques. Hence, it is

proposed in this research to develop the theory of real-valued

MACE filters and study their performance.

3.2. Theoretical Development

In this section, mathematical notations and terminology

used in the design of RMACE filters are presented. Then, the
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solutionfilter design problem is formulated and its

discussed.

3.2.1. Notation

The RMACE filter, like the MACE filter, is synthesized in

the discrete frequency domain. Let Xi be the two-dimensional

discrete Fourier transform (DFT) of the ith training image xi

of size MXMfor i = 1,2, .... ,N. Then Xi is given by

M M

I_-i la-i

(3.1)

exp{ -j2_((1_-I) (kI-I)*(12-I) (k2-1))}M "

k I,k2=I,2, . .,M.

The training images are represented in the discrete

frequency domain by vectors X£, i=l, 2, .... ,N with the

subscript denoting the training image number. The set of all

training vectors X£, i = 1,2,...,N, form the data matrix X

with X i arranged as the columns of X. Let the real function

represent the response of the filter in the frequency

domain.

The correlator output of the ith image with the filter

function H is given by -

g-_ (nl, n2 ) = IDFT(-_i (kl, k2 ) ) (3.2)

where Si (kl, k2) represents the discrete Fourier transform

(DFT) of the response function, and is given by

G-_(kl,k 2) = X-_(k_,k 2) H(k_,k 2) . (3.3)



The energy of the correlation output for the image xi

then given by

4O

is

M M

E,:ZZ
n1=l n2=l

Ig-_i(nl,n2) I_-

M M
_ 1

ki-i k2=i

(3.4)

Substituting Eq. (3.3) into Eq. (3.4), the energy of the

output corresponding to the ith image xi is obtained as:

E/ --

M M
1

ki=1 k2=1 ,-

d
(3.5)

where H and X£ are the one-dimensional vectors representing

the filter H and the image Xi- Then, using vector-matrix

notation, Eq. (3.5) can be written as:

E,= S rDiH

where D i is a diagonal matrix of size d×d such that

(3.6)

i 12Di(k,k ) = -_ lX_Ck) , k=l,2, " ,d, (3.7)

and

D i(kl,k 2) = O,
k1_k2' l<k1<d' (3.8)

l _k2_d.
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3.2.2. Problem Definition

The objective of the pattern recognition problem under

consideration is to design a real-valued filter that results

in sharp correlation peaks while meeting the constraints on

the correlation peak values and retaining the shift invariance

property. To achieve a good detection, filters should produce

sharp and easily detectable correlation peaks and small

sidelobes. Hence, it is necessary to reduce the correlation

plane values at all the points except at the origin of the

correlation plane, while the value of th_ correlation function

must be at a user specified value at the origin. This is

equivalent to minimizing the energy of the correlation

function while satisfying the intensity constraint at the

origin.

In vector notation, the correlation intensity constraint

at the origin is given as

-- i xZs
gi (0, 0) - M 2

H2 <0,0> = xfs= ui, i=i,2 ...... ,N

(3.9)

where u i is the user specified value of the ith correlation

function at the origin. Taking all the imageh _ into account,

Eq. (3.9) can be written as

where u = [u I, u 2 ,

X TH = U (3.10)

..... , UN] T is an N dimensional vector.
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The problem is to determine the frequency domain real

vector H which minimizes HTDiH for all i = 1,2, ..... N, while

satisfying the peak constraints in Eq. (3.10). When the

filter H is required to be real, the constraints in Eq. (3.10)

can be written as

(x z+ jx z) Ts= u. (3.11)

That is,

(X_ + jX_) H = u (3.12)

where X e and X z are the real and imaginary parts of X,

respectively. In general u can be complex. Then for a real

filter response H, Eq. (3.12) can be written as

X_s+jX_s = u,÷ ju, (3.13)

where u R and u I are the real and imaginary parts of u. By

equating the real and imaginary parts of Eq. (3.13) the

following pair of constraints is obtained:

XaTH = u e (3.14)

and

xls = u,. (3.1s)

The simultaneous constrained minimization of all Ei, i =

1,2,...,N, is not possible. So the problem is reformulated to

minimize the average value of E i in Eq. (3.6) while meeting
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correlation plane energy is
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average

N

%v-
N i-i

1 N

i-1

N

Di).
i-i

= H_DH

where D is defined as:

(3.16)

N

N i-i

(3.17)

3.3. RMACE Filter Solution

In this section, the solution of the RMACE filter is

developed. It is required to minimize the average correlation

plane energy HTDH subject to the linear constraints xTH = U.

Using the method of Lagrangian multipliers, the function to be

minimized can be written as

= HTDH-2 _i (HTXaa - ual) -" ....... -2 A N (HrXax - URN)

-2 _i (H" X=- un ) -. ....... -2 p N (S" Xz,- u_N) .

(3.18)

Setting the gradient of _ with respect to H equal to 0(zero

vector), the following equation is obtained:

DH = liX1z + .... + lNXsz + piX1z + .... + psXn. (3.19)
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As D is a diagonal matrix, if D(k,k) _ 0 for all k, then D

will be invertible and D-l(k,k) = I/D(k,k) and D-l(k,l) = 0,

for k_l. D will become noninvertible _f D(k,k) = 0 for some

k. D(k,k) = 0 means that the reference images have zero

energy at the frequency corresponding to k. Hence, it is

desirable to make the filter to have zero response at this

frequency so that any noise in the test image at this

frequency does not contribute to the output. This can be

accomplished by making D-l(k,k) = 0 where D(k,k) = 0 and

D-l(k,k) = I/D(k,k) where D(k,k) _ 0. Then, from Eq. (3.19),

H is obtained as

N

H: D-I_ (liX_x + _iXiz) : D-IXel + D-IXx_ (3.20)
i=i

where the vectors I and _ are defined as

= [ _i,_2, .he ]T• • . l

and _ = [ _1,_2, .... _N ]T.

Substituting Eq. (3.20) into Eqs. (3.14) and (3.15), the

constraint equations become

xl (_-_x_X ÷ D-_Xz _ ) = ux, (3.21)

Letting

XT (D-_Xx;_ ÷ D-_Xz_ ) = uz. "_ (3.22)

A: zip ix,
B: Zf D1Z_
C: XI D IX_

(3.23)



Eqs. (3.21) and (3.22) can be written as

Al ÷ Bp = ux
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(3.24)

B rl + C_ = u z. (3.25)

Eqs. (3.24) and (3.25) can be solved for I and _ as

= (A_BC-_B_')-I (ux-BC-luz)

(3.26)

= ( C- B'A -IB) -i ( Uz_ B _.A-lua) .

Then substituting for I and _ from Eq. (3.26) into Eq. (3.20),

the final expression for H is found as

s : D

The real vector H in Eq. (3.27) minimizes HTDH

simultaneously satisfying the constraint xTH = U.

(3.27)

while

3.4. RMACE Filter for Real Siqnals

the test objects are real as input to the

Hence, the RMACE filter for real test objects is

Often

correlator.

first considered. Since the filter is synthesized in the

frequency domain, the odd and even symmetry properties of the

Fourier transform (FT) of real signals may be used to simplify

the filter function derived in the previous section. The FT

of a real image x(nl,n2) has the following symmetry property:

_(kl,k2) = X'(M+2-kI,M+2-k2 ) (3.28)

where



_(kx,k 2) = F{7:(nl,n2) }

and _*' denotes the complex conjugate operation.

can be rewritten as

x-_(kl,k2) = x-_(_÷2-kI,M÷2-k2>.
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Eq. (3.28)

(3.29)

and

X-_ (kx, k 2) : - X-_ (M+2-k I, M+2-k 2) • (3.30)

The odd symmetry in Eq. (3.30)results in

B = X_D-*Xz= O.

Substituting this condition into Eq. (3.27), the purely real

filter function for real signals is obtained as

s : z,-_[x,,tx[z_-_x.) -_u_,+x_tx[D-_ x_ -_u_]. (3.31)

For the case when u is real, i.e., u I = 0, the solution

in Eq. (3.31) reduces to

s : =_x.{xID-_X.} -_u. (3.32)

It should be noted that only XR, the real part of the matrix

X is needed for the design of the filter function. Hence, the

RMACE filter in Eq. (3.32) needs less memory and computation
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time. Unless otherwise stated all the results presented in

this chapter refers to the RMACE filter in Eq. (3.32).

3.5. The Symmetry Property of the RMACE Filter

When the input objects xi, i= 1,2, ....... ,N, are real,

the two-dimensional DFTs Xi possess centro conjugate symmetry

as:

X--_i(kI, k 2) = _i(M+2-k I, M+2 -k2), l_kl,k2<M (3.33)

where M×M is the size of the object. This can be used to

reduce the number of filter coefficients to be determined.

Since X£ is the one-dimensional equivalence

condition can be written in terms of X i as

of Xi, this

Xi = JQX_I, i:i,2 ...... N (3.34)

where Jc is a dxd matrix given by

LT_ -----

{ : :

Z_ Y_ Zx_ (x-2) J

where ZM× M is a MXMmatrix of zero entries and

(3.35)
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Y_=

I00..00

000...01

000...I0

!_I..._

010...00

(3.36)

That is, from Eq. (3.34)

JaX,- = X_

Since D, a diagonal matrix,

i=i,2, ...,N.

has its diagonal elements the

samples of the average power spectrum of the training images,

it satisfies the following condition:

,).7"aD-1J ° = D -J'. (3.37)

The same matrix Jc can be used to show the symmetry property

of the filter H as follows: The filter from Eq. (3.31) is

H = D-x(XaA -I Ux+ Xz C-I Ux). (3.38)

Noting that JcJc = I , identity matrix, Jc H is obtained as

= {JaD-IJ_{JoXsA-lue+JoXzC-luz} (3.39)

= D-I (XiA -1 U x- X z C -I Uz).

If U is restricted to be real, u I is-zero, then Jc H = H.

Thus the filter possesses centrosymmetry and the corresponding

impulse response is real. If u is imaginary, u R is zero, then

JcH = -H. That is, H possesses centro anti symmetry and the
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impulse response is imaginary. Then for M even, it is only

required to determine M2/2 + 2 filter coefficients. This

would save computer memory and CPU time in filter design. If

u is complex the filter H does not possess any symmetry.

3.6. Properties of the RMACE Filter when u is Real

The RMACE filter for the case of real signals and for the

real output was derived in Section 3.4. This section discusses

two noteworthy properties of this filter. Section 3.6.1

discusses the filter performance and Section 3.6.2 discusses

the structure of this filter.

3.6.1. Sinqle Traininq Imag_

Consider the case where the number of training images N

is equal to one. Let X represent the DFT of the single

training image. Then the diagonal elements of D are given by

D(k,k) = IX(k)12 , k=l,2, ..... d. (3.40)

Thus, the quadratic term A is given by

A= xID1x,

(3.41)d

: _ xT(i) Xa(i) D-1(i,i)
i-i

where X(i) denotes the i th element of the vector X. Since D

is diagonal, Eq. (3.40) can be substituted into Eq. (3.41) to

obtain
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xf(i)xR(i)
(3.42)

where _ is a constant. For this special case, Eq. (3.32)

reduces to

H = D-1XxU ! (3.43)

where u" = u/_. That is,

U /
H(k) = XR(k) (3.44)

Ix(k) I_

Note that the RMACE filter of Eq. (3.32) with a single

training image under a suitable scaling is the real part of an

inverse filter defined in Reference [46] as

Hzm, FasE(k ) _ X" (k) (3.45)

Ix(k) ]_

3.6.2. Structure of the

RMACE filter

r

The RMACE filter of Eq. (3.32) can be interpreted as a

cascade of two stages as in the case of MACE filter [15]. For

the special case where D is an identity matrix, the filter

function of Eq. (3.32) reduces to the real-valued conventional

SDF and is given by

sup, = x,, (xl z,) -_ u. (3.4e)
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All the terms in Eq. (3.46) refer to quantities in the

discrete frequency domain. Therefore, the expression in Eq.

(3.46) represents the real-valued conventional SDF filter in

the frequency domain.

Using this real conventional SDF filter, the RMACE filter

can be considered as the cascade of two separate stages as

described below. The RMACE filter is given by

H = D -_x_(xID -_x_)-Iu

The diagonal elements of D are equal to the samples of the

average power spectrum of the training images. Hence, the

diagonal elements of D -1 are reciprocals of the corresponding

elements of the average power spectrum. Let D -I/2 = P, i.e.,

P is a diagonal matrix with its diagonal elements being the

reciprocal square root of the diagonal elements of D. Then

s = P(Px,)(xIP_x,)-_, (3.47)

Let PX R = YR" Then Eq. (3.47) can be written as

s --PY_(zIY_)-_u. (3.48_

The term YR{YRTYR}-Iu is the real conventional SDF denoted by

HYRsDF. Then

¥
H = PHRsD.. (3.49)
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Thus, from Eq. (3.49) the filter function H in frequency

domain may be seen as the cascade of a matrix P and the real

conventional SDF. Eq. (3.49) can be described by the block

diagram in Figure 3.1.

XI

p

YI

H YSDF

Ul

V

Figure 3.1. RMACE Filter as a Cascade of the
Pre-whitener P and the Conventional SDF

As shown in Figure 3.1, the input data X i is first filtered by

P which may be viewed as a spectrum whitening filter and then

by HYRsDF which is based on the filtered data to obtain the

output u i .

From the above discussion the following

interpretations for the RMACE filter can be made:

i. The RMACE filter is a real conventional

.

alternate

SDF filter

operating on the preprocessed or filtered data, where the

preprocessor forces the average power spectrum of the

training images to become white.

The results in Reference [47] show that the optimal

filter for a particular type of input noise is a cascade

of a whitening filter and a conventional SDF operating on

the transformed data. Hence, the RMACE filter is also



optimal in the presence of

whitening filter.
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noise for which P is the

3.7. Alqorithm for the Construction of RMACE Filter

An algorithm for the development of the RMACE filter of

Eq. (3.32) for a real input object and real u specification is

given below.

i. From the given training images xi, i=i,2, ..... ,N,

compute the two-dimensional Fourier transform Xi"

2. Obtain the column vectors X£, i = 1,2, ..... ,N, by a

lexicographical ordering the rows of the image Xi-

3. From the vector images Xi, i = 1,2, .... ,N, find the

diagonal matrix D i as

i Ixi<kli2Di(k,k ) = _

.

.

.

7.

Compute the matrix D as

N

N i-i

From the real part of the training images XRi , find the

data matrix X R as

X_= [X_, X_ ....... , X_].

Obtain the matrix A = {xRTD-IXR}-I.

Using the specified correlation output constraints ui, i

= 1,2, ..... ,N, and matrices D and A construct the RMACE

filter as



H = D-IX_A -I U.
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3.8. RMACE Filter when the Specified u is Complex

The previously proposed RMACE filter maximizes the peak

sharpness by minimizing the average output energy resulting in

good performance. In this section, it is shown that this

output correlation energy can be further reduced by selecting

optimally the phase values of the output constraints u. Since

only output intensity values are used by the detector for

recognition, these phase choices do not affect the detector

output.

3.8.1. Optimal Phase for

Correlation Outputs at

the Origin

In order to reduce the output correlation energy by the

proper selection of the phases of the output constraints, the

correlation output for the ith image may be written as

ui = _i exp{jSi}

(3.so)
= FicosSi+JFisinSi , i=1,2, ...... N

where _i ,i = 1,2, .... ,N, denotes the output constraint

magnitude and O i denotes its phase. As mentioned earlier, in

a typical optical correlator, only the magnitude of the

correlation outputs are available from the detectors and thus

only _i, i=l,2,...,N, need to be specified. Hence the phases



8i, i=I,2, ..... ,N,

plane energy.
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can be chosen to reduce the correlation

Substituting Eq. (3.50) into Eq. (3.9) the constraint at

the origin can be obtained as

XZH = _icosSi+J_isinSi, i=i,2 ....... N.

The above expression can be written in terms of

matrix X as

(3.5z)

the data

xrH = p cos8 + j p sln8 (3.52)

where _ is an NXNdiagonal matrix with diagonal elements as

p(k,k) = Pk, (3.53)

cos0 = [cos0 I,cos02 ...... ,cosSe] T

and

sin8 : [sin8 I, sin82 ....... sinSN] r

are N dimensional vectors.

Comparing Eqs.(3.13) and (3.52) the following conditions may

be obtained.

and

U x = pCOSe (3.54)

u z = psin@. (3.55)
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Hence, for real signals, the new optimal filter Hop t is

obtained from Eq. (3.31) as

Sop _ = D-* {X_A -I_cos0 + XzC -I _ sine)

where

A = xI=Ix,

c= xID-_x_.

and

(3.56)

(3.57)

(3.58)

Note that when u is real, i.e., @i = 0 or _ for i = 1,2,...N,

Eq. (3.56) reduces to the original RMACE given in Eq. (3.32).

The output plane correlation energy resulting from the

use of optimum RMACE filter can be computed from Eqs.(3.56)

and (3.14) as

E°Pc : H°TPeD HoPe (3.59)

= [coser_ A-I _ cos8 + sine TF C-I _ slne].

Let aij and cij be the ij th elements of the matrices A -1

and C -I, respectively. Then Eq. (3.59) can be obtained as

N N

_t=EE
i=1 j=l

(COS{)i _ i aii _ j cose ]

+ sinei _i cij _j sinej )

N

=E _(a,_cos_6;+c_sin2_,)
i=i

N N

÷2E E
i-i j=i+l

i_ j(alic°se ic°se j + cijsine isinei).

(3.60)
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The output correlation energy can be minimized by making

Eq. (3.60) as small as possible by a.proper choice of the

phase values Oi, i= 1,2,...,N. So the required optimization

can be written as

_: Mine,,e, .....e, [i.I_ p _ (ailcOs2ei+ciisin'el)

N N

+ 2E E _i_j(aijc°sOic°s@j+cljsinOisinej)"
i.l j-i_l

(3.61)

The optimization of the trigonometric function in Eq. (3.61)

can be performed to choose the optimal 8 i by setting the

gradient of _ to zero:

- 0, i=i, 2, .... N. (3.62)

Combining Eqs.(3.61) and (3.62) leads to the following

simultaneous equations in N variables and obtained:

N N

sine i E (aij COSej) - COSe; E ( cij sine j) = 0,
j:1 j:1

/=1,2 ......... N.

(3.63)

For the given matrices A and C the above simultaneous

equations may be solved using a nonlinear algorithm. These

optimal phase values can then be used to obtain the required

filter function in Eq. (3.56).

It may be noted that 8 i = 0, i = 1,2, ..... N, is one of

the solutions to the above nonlinear set of equations, which

corresponds to the original RMACE filter. The important fact

to be noted is that the optimization in Eq. (3.63) is
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independent of H itself and depends only on the constraint

magnitudes _i, and the training vector Xi. This permits a

convenient de-coupling of the optimal correlation output

constraint phase selection and the synthesis of the filter.

An outline of the algorithm for the development of RMACE

filter with optimal phase values is presented.

3.8.2. Alqorithm for the

Filter Construction

The steps in the synthesis of RMACE filter with proper

selection of output phase values are summarized below.

I. From the vector matrix X find A =(xRTD-IXR) and

C = (xITD-IxI), where D is given by

N

D(k,k) - 1 _ iXi(k)12
N i-i

2. Using the elements of matrices A -I and C -I solve the non-

linear set of equations given in Eq. (3.63) to obtain the

optimal correlation output phase values 8 i , i =

1,2, .... N.

3. Use these phase values along with the specified

correlation output constraint magnitudes _i, i=i,2, .... N,

and the inverse of the matrices A and C to obtain the

required optimal RMACE filter in Eq. (3.56).

Before giving the results of. the simulation, a simple

analytical example to illustrate the importance of this method

is presented in the next section.
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3.8.3. Example with N = 2

For this case the optimization problem in Eq. (3.63) is

simplified to the following:

sin81cos81 (a11-c n) +a12sinOlcosO2-c12cos81sin82 =O
(3.64)

sin82cos82 (a22-c22) +a21sin82cosel-c21cose2sin81=O.

If 81 is set arbitrarily to zero then, Eq. (3.64) reduces to

sine 2 = 0.

Thus, 82 can either take the value of zero or _. e I = 0 and

82 = 0 corresponds to the RMACE filter discussed in Section

3.4 and the resulting output correlation plane energy is

- 1 [_a11+_2a22+2_1"_2a12 ]. (3.65)Ear 2

When e I = 0 and 82 = _, the corresponding output plane energy

is given by

1
Eop t = _[_a11+_a22-2_1_2a12] • (3.66)

From Eqs.(3.65) and (3.66) it can be seen that if a12 is

positive then a reduction in correlation plane energy may

result from the phase optimization of the constraint.

Consider the special case where the two training vectors

having the following 2×2 vector inner product matrix



6O

(3.67)

where IPl < i. For this choice of vector inner product and

unit diagonal matrix D, the elements of the inverse of the

matrix A can be obtained as

1

a11=a22 - l-p2

a12 = a21 - -p

1-p 2

(3.68)

Thus 81 = 0 and 82 = _ is the optimal choice compared to

the case where 81, 82 = 0, only when a12 is positive; i.e., for

negative p values. Hence, the above example shows that there

is potential for a reduction in the output correlation plane

energy when the training images are negatively correlated.

3.9. Simulation Results

In this section the distortion tolerance properties of

the RMACE filter for real u are studied using computer

simulations. The RMACE filter was synthesized to discriminate

between two objects of images of the landscape of Mars,

referred to as marsl (Class I) and mars2 (Class 2) as shown in

Figures 3.2 and 3.3. Both marsl and mars2 _ve 64×64 pixel

sized images padded with zeros to generate the 128×128 pixel

sized images, with the image located at the origin.

The database used to test the RMACE filter performance

consisted of thirteen _mages of each object class. Thirteen

images were obtained by rotating the base image through angles
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Figure 3.2. Image marsl

Figure 3.3. Image mars2
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one through thirteen degrees. The rotation was carried out

using a computer algorithm. The training se[ data used in the

construction of the filter was evenly spaced in the range of

the angle of rotation. The parameters used in the test to

describe the sharpness of the correlation peak were the peak-

to-side-lobe ratio (PSR) in the correlation plane and the

average correlation plane energy E.

The threshold used for discriminating the two classes of

objects was obtained as

T = 0.2 ui+0.8 u2 (3.69)

where u I and u 2 are the specified peak correlation outputs for

the images marsl and mars2, respectively. Since by choice

u I > u2, the weight for u I was kept low. Generally no peak

higher than u 2 for mars2 images or u I for marsl images occurs.

Hence, by choosing a low weight for ul, the threshold value

can be kept very close to Ul, thereby improving the rate of

detection.

Section 3.9.1. discusses the results of the computer

simulation to show the distortion tolerance capacity of the

RMACE filter. These tests were also implemented for the

conventional SDF which is referred to as CSDF Sad for the MACE

filter in order to compare the performance of the RMACE filter

With their performances.
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3.9.1. Distortion Test

Results

The results of the computer simulations to evaluate the

distortion tolerance of the RMACE filter against the MACE and

the CSDF filters are presented. All three filters are

correlated with both training and nontraining set images. The

resulting correlation peak is measured and used for image

classification.

In the following tests, the correlation peak values were

compared to the fixed threshold T in Eq. (3.69) for target

classification. The training set chosen in all the tests for

the filter construction consistedof images evenly distributed

through the range of rotation. Three types of filters were

synthesized for the two class pattern recognition problem of

marsl and mars2. Tests were conducted on all thirteen images

belonging to each class. The results of these tests are now

discussed.

In the initial tests, the training set for the filter

synthesis included three evenly spaced images for each of the

two classes for a total of 6 training images. The images used

were rotated through angles 1,7, and 13 degrees. Correlation

peak amplitudes of 20 and I0 were arbitraril_ J specified for

images marsl and mars2, respectively.

The RMACE filter was synthesized

algorithm given in the previous section.

filters were also synthesized for the

images.

according to the

The MACE and CSDF

same training set

The average correlation energy of the training images
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is an indication of the filter performance. A low average

correlation energy implies sharper correlation peak, higher

PSR and more sensitivity to distortion.

The average correlation energy Eav = HTDH = 0.1743 was

achieved for the RMACE filter. This is relatively small

compared to the energy of 29.89 obtained for the same set of

training images with the CSDF filter. The energy of 0.0856

was achieved with the MACE filter, which is smaller than that

of RMACE filter, however, the reduction is not much. A poor

recognition rate is suggested by the higher average

correlation energy. However, when the correlation plane

energy is small resulting in sharper peaks, the filter is more

sensitive to noise and distortion. Since the correlation

plane energy of the RMACE filter is higher than that of the

MACE filter, the distortion tolerance of RMACE filter would be

better. Further, since the energy is much lower than that of

the CSDF filter, the quality of the correlation plane is

expected to be good with low side lobe levels. The data

presented in this section confirm the trends predicted on the

basis of the average correlation plane energy values.

A typical three-dimensional plot o_ the output

correlation plane for the RMACE filter is shown in Figure 3.4.

The sharpness of the correlation peak is excellent, and the

sidelobes are very low. For comparison, the three-dimensional

plots for MACE filter and CSDF filter are shown in Figures 3.5

and 3.6. Comparing Figures 3.4 and 3.5, no significant
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Figure 3.4. Correlation Plane Output Intensity with
the RMACE filter

Figure 3.5. Correlation Plane Output Intensity with
the MACE filter
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Figure 3.6. Correlation Plane Output Intensity with

the CSDF filter
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difference in performance between the RMACE filter and the

MACE filter can be seen. Both filters have very sharp

correlation peaks and very low sidelobes. From Figure 3.6 the

correlation peak sharpness of the CSDF can be seen as being

very low.

All three filters were then tested against the 13 images

of marsl and mars2 in the database. Table 3.1 lists the

statistics for Class 1 and Class 2 training data for the RMACE

filter. These data include test image, the intensity at the

origin, the highest and the second highest peak anywhere in

the correlation plane, plus the two measures of sharpness of

the correlation peak namely, average correlation plane energy

E for the test image and PSR, the peak to sidelobe ratio.

Pixel (i,I) is the origin at which the value is specified as

20 and i0 for marsl and mars2 images, respectively.

It can be seen from Table 3.1 that all six correlation

peaks obtained from the images used in the filter construction

satisfied the imposed constraints at the origin. The peak at

the center is also the largest peak and has a reasonably high

PSR and low E measures indicating sharp peaks. The same

statistics for the MACE and CSDF filters are given in Tables

3.2 and 3.3, respectively. As expected the performance of the

RMACE filter is similar to that of the MACE filter.
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Table 3.1. Correlation Plane Statistics for RMACE Filter

Image Specified Intensity Largest PSR Average

Intensity at the Peak Energy

at the Origin

Origin

marsl.l 20.0 20.0 20.0 5.13 0.173

marsl.7 20.0 20.0 20.0 3.91 0.186

marsl.13 20.0 20.0 20.0 4.58 0.193

mars2.1 I0.0 I0.0 i0.0 3.51 0.160

mars2.7 i0.0 i0.0 i0.0 3.01 0.168

mars2.13 I0 0 i0.0 I0.0 3.01 0.167

Table 3.2. Correlation Plane Statistics for MACE Filter

Image Specified Intensity Largest PSR Average

Intensity at the Peak Energy

at the Origin

Origin

marsl.l 20.0 20.0 20.0 9.14 0.086

marsl.7 20.0 20.0 20.0 7.47 0.092

marsl.13 20.0 20.0 20.0 7.99 0.094

mars2.1 i0.0 I0.0 i0.0 5.31 0.078

mars2.7 I0.0 i0.0 i0.0 5.25 0.082

mars2.13 i0 0 i0.0 i0.0 3.88 0.082
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Table 3.3. Correlation Plane Statistics for CSDF Filter

Image Specified Intensity Largest PSR Average

Intensity at the Peak Energy

at the Origin

Origin

marsl.l 20.0 20.0 20.0 1.02 37.37

marsl.7 20.0 20.0 20.0 1.00 37.39

marsl.13 20.0 20.0 20.0 1.02 37.38

mars2.1 I0.0 i0.0 12.60 1.00 22.40

mars2.7 I0.0 i0.0 12.64 1.00 22.41

mars2.13 I0 0 i0.0 12.53 1.00 22.41

o

From Table 3.3 it can be seen £hat the largest peak

obtained using CSDF for Class 2 images are not at the center

of the correlation plane. The energy scatter of the

individual correlation energy levels with the average

correlation plane energy of 29.89 is much higher in comparison

to that of both RMACE and MACE filters. Also, the PSR values

are much lower. However, the variation in PSR and E values

over all the test images is greater for both RMACE and MACE

filters than for CSDF filter. Thus, RMACE and MACE filters

are more sensitive to distortions than the C$_F filter.

The test results of the RMACE filter for both training

and nontraining images along with those, for the MACE and CSDF

filters are summarized in Table 3.4a as tests I, 2, 3, 4, 5,

and 6. A fixed threshold of T = 12.0 was used for

classification. If the largest peak anywhere in the
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correlation plane was found to exceed this threshold, the

input image was classified as belonging to Class i, otherwise

to Class 2. While the training set images are easily

recognized, the nontraining images are often misclassified.

The plots of the largest peak anywhere on the correlation

plane versus the test image number for marsl (represented by

• ) and the test image number for mars2 (represented by *) are

shown in Figures 3.7, 3.8, and 3.9 for RMACE, MACE, and CSDF

filters, respectively. Figure 3.7 shows six marsl images

below T = 12 and zero mars2 images above this threshold.

Thus, the RMACE filter was able to achieve recognition rates

of 54 percent and i00 percent for marsl and mars2 images,

respectively. Figure 3.8 is similar to Figure 3.7. However,

Figure 3.9 shows all marsl and mars2 images above the

threshold. Hence, the detection rates of i00 percent and 0

percent for marsl and mars2 images were achieved. However, if

the threshold was set to T = 15, then I00 percent detection

rates for both marsl and mars2 images may be obtained.

On the basis of tests 1-6, it can be concluded that,

while the sidelobe suppression is acceptable, the RMACE filter

does not provide good distortion tolerance. One method to

achieve better distortion tolerance is to increase the number

of training set images. Tests 1-6 w_re repeated with the

number of class 1 images increased to seven, each spaced two

degrees apart in the angle of rotation. The number of class

2 training images were kept at three per object. The results
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of these tests (tests 7-12) are summarized in Table 3.4b. It

can be observed that the Class 1 recognition rate improved by

46%. Also, the average PSR values increased from 2.67 to

4.21. However, the PSR values for class 2 images have

decreased.

To avoid this, the class 2 training set images were also

o

increased to 7 images per class and the same tests (tests 13-

18) were repeated and tabulated in Table 3.4c. As can be

noted, the effect of increasing the number of training images

is to increase the average correlation energy and broaden the

correlation peaks.

Table 3.4a. Filter Performance for Three Training Images per

Object Class

Test Filter Object Percent Average Average

Number Class Correct PSR Energy

1 RMACE marsl 54% 2.67 0.234

2 RMACE mars2 100% 1.94 0.225

3 MACE marsl 54% 3.69 0.119

4 MACE mars2 100% 2.58 0.112

5 CSDF marsl 100% 1.01 37.38

6 CSDF mars2 0% 1.00 22.41
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Table 3.4b. Filter Performance for Seven Class 1 and Three
Class 2 Training Images

Test Filter Object Percent Average Average
Number Class Correct PSR Energy

7 RMACE marsl 100% 4.21 0.281
8 RMACE mars2 100% 1.70 0.323

9 MACE marsl 100% 4.19 0.140
i0 MACE mars2 100% 2.12 0.156

ii CSDF marsl 100% 1.01 37.45
12 CSDF mars2 0% 1.00 22.45

Table 3.4c. Filter Performance for Seven Training Images per
Object Class

Test Filter Object Percent Average Average
Number Class Correct PSR Energy

13 RMACE • marsl 100% 3.84 0.301

14 RMACE mars2 100% 2.10 0.291

15 MACE marsl 100% 3.76 0.150

16 MACE mars2 100% 2.48 0.139

17 CSDF marsl 100% 1.00 37.45

18 CSDF mars2 0% 1.00 22.44
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3.9.2. Observations

On the basis of the results of the previous section, it

can be concluded that the distortion tolerance of the RMACE

filter may be easily improved by increasing the number of

training set images with distortion. The correlation plane

PSR would then be reduced but it is still sufficiently high to

facilitate easy detection. Unlike the CSDF, the average

correlation plane energy is much lower for the RMACE filter.

Though the RMACE filter produces slightly larger correlation

energy than that of the MACE filter, it does not provide high

sidelobes. Narrow correlation peaks provide better location

of the target but make the filter's distortion invariance poor

and its noise performance worse.

requirements on the sharpness of the

attractive.

Thus, reducing the

correlation peak is

3.10. Noise Test Results

The ability of RMACE filters to recognize the object was

tested under the following conditions:-

i. When the intensity levels of the input images are varied

by multiplying it with a constant factor.

2. When the input images are corrupted by a zero mean white

noise.

3. When the intensity of each pixel of the input image is

affected by a random bias term.
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3.10.1. Input Imaqe

Intensity Correction

The peak correlation at the origin depends on the

intensity of the input image. For example, if the intensity

of the test image is multiplied by a factor _ then the

correlation peak is also multiplied by the same factor _.

This problem may be overcome by normalizing the output. The

normalizing technique used here is the normalization using the

average value of the image.

In order to make the filter robust against any intensity

scaling, the correlation peak output constraints at the origin

in Eq. (3.8) is modified to obtain the normalized output as

xfH
- u i, i =1,2 ...... N (3.70)

where _i is the average value of the test image X i. Hence, to

avoid correlation peak variation due to intensity scaling the

new constraints in Eq. (3.70) are imposed during the filter

synthesis. The performance of the filter synthesized using

normalization was found to remain independent of the scale

factor, unlike the response of the filter without

normalization.

The performance of normalized RMACE filter is also

examined in the presence of noise. The effect of zero mean

white noise on the performance of the filter is studied by

observing the degradation of the filter output with increasing
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noise power. Since the noise is zero mean, the response of

the normalized filter is expected to be good.

The normalized RMACEfilter was synthesized with seven

images of marsl and mars2. As before the correlation peak

output was specified to be 20 and i0 for all the images in

Class 1 and Class 2, respectively. White, zero-mean, Gaussian

noise of different signal to noise ratio (SNR) values were

added to all the images in the database (all 26 images).

Then, the normalized filter was applied on all the images.

The peak correlation value, the PSR, and the energy of

the correlation plane were noted and averaged over all the

images. The results of the test are summarized in Table 3.5

for various SNR values between 20 dB and 0 dB.

The average behavior of the global correlation peak over

ten Class 1 and Class 2 images for SNR of 20 dB, 15 dB, I0 dB,

5 dB, and 0 dB was considered. The global peak intensity and

the true peak were observed to drop steadily for SNR values

between 20 dB and 5 dB and increased for the SNR of 0 dB.

From the average PSR values it can be seen from Table 3.5 that

for SNR > 5 dB sharp peak occurred. Also, it was observed

that the global correlation peak occurred away from the origin

of the correlation plane for SNR value < 5 dB. For higher SNR

values, the global correlation peak always occurred at the

center of the correlation plane. However, for lower SNR

values (SNR < 5 dB), the global correlation peak occurred at



points away from the center of the correlation plane,

detection errors were encountered.
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and

The object recognition rates achieved by the filter in

the presence of noise is also summarized in Table 3.5. It can

be noted that the recognition rate remains well above 90

percent even for SNR of 15 dB. This demonstrates the enhanced

noise tolerance of the RMACE filter. From these tests it can

be concluded that the RMACE filter can tolerate a significant

amount of noise (SNR = i0 dB) before the sidelobes dominate

the correlation peak at the origin. Also, it can be seen from

the table that the PSR of the correlation peak slowly degrades

with increasing noise.

Table 3.5. RMACE Filter Performance with Noise

SNR in % Recognition PSR

dB. marsl mars2 marsl mars2

20 100% 100% 3.40 1.75

15 100% 92% 3.00 1.51

i0 100% 70% 2.09 1.17

5 100% 0% 1.25 1.08

0 100% 0% 1.07 1.05

3.10.2. Input Imaqe Bias
Correction

Another practical issue associated with filter synthesis

is the effect of input bias. A random bias term can be

considered as a constant noise term added uniformly to the
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entire input image. This bias term results in the degradation

of correlation plane PSR.

To avoid this, it is required that the output of the

filter for a random but spatially constant bias signal be

zero. If this condition is satisfied, uniform bias terms at

the input will not affect the correlation plane PSR. So the

required filter must satisfy

M M

r, : o.
i-i j-i

Thus, to ensure invariance to uniform bias signals, the filter

should satisfy the condition H(0) = 0. This condition may be

easily imposed on the filter synthesis by including a constant

image in the training set and setting the corresponding output

to zero.

An example to demonstrate the effectiveness of the

proposed scheme for protecting PSR degradation resulting from

input bias is given below. RMACE and MACE filters (denoted by

hRl and hal ) for a single training image were synthesized from

one of the set of marsl images. A second set of filters, both

RMACE and MACE (denoted by hR2 and hs2), were also synthesized

for the same training image with the additional constraint in

Eq. (3.71). The desired output correlation peak values for

all four filters were specified to be 20. Four filters were

then correlated with ten biased versions of the training
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image. The bias levels, the correlation plane PSR values for

all four filters are indicated in Table 3.6.

From Table 3.6, it can be seen that the performance of

the MACEfilter hMl synthesized without imposing the zero mean

condition is clearly affected by the bias levels. However,

the performance of the zero mean MACE filter hM2 is not

affected by any bias added to the input image. On the other

hand, the performance of both zero mean RMACEhRl and the

Table 3.6. Filter Performance with Input Bias Levels

Bias

Correlation Plane PSR Values

RMACE

Filter hRl Filter hR2
with no with Bias

Bias Correction

Correction

MACE

Filter hMl Filter hM2
with no with Bias

Bias Correction

Correction

X 103 X 103

i0 13.51 13.54 43.60 16.38

20 13.49 13.54 14.55 16.38

30 13.47 13.54 7.28 16.38

40 13.44 13.54 4.37 16.38

50 13.40 13.54 2.91 16.38

60 13.35 _ 13.54 2.08 16.38

70 13.30 13.54 1.56 16.38

80 13.24 13.54 1.21 16.38

90 13.17 13.54 0.97 16.38

i00 13.10 13.54 0.80 16.38

filter without the zero mean constraint.hR2 are quite similar.

Thus, the RMACE filter without the additional constraint in

Eq. (3.71) is not affected by the bias levels. Hence, it can
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be concluded that the zero mean condition imposed during the

filter synthesis is necessary to guarantee immunity for MACE

filters against the random input bias .levels. However, the

RMACEfilter preserves constant correlation plane PSR values

against input bias levels even with no input bias correction.

3.11. Results of Phase Optimization

The performance of the filter, with phase optimization of

the correlation output constraint discussed in Section 3.7, is

presented here. The same two-class problem as before is

considered. For various 81 and 82 values, the average energy

per training image was evaluated and summarized in Table 3.7.

It can be seen that the proposed phase optimization procedure

reduces the output correlation plane energy from 0.1119 (81 =

0 and 82 = 0) to 0.1096 when 81, 82 = _/2. This represents an

energy reduction of 2.1 percent. Even though the reduction is

not much it shows the potential improvement in performance by

proper selection of the correlation output constraint.

Hence the proposed method for the selection of the phases

of the correlation output constraints leaves the magnitudes

values unaffected while reducing the output correlation

energy. This improves the detection/discrimination

performance of the filter. The exact amount of reduction in

energy depends on the training images used.
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Table 3.7. Correlation Plane Energy for Phase Optimization

I

81 82 Correlation

Plane "Energy

0 0 0.1119

0 _ 0.1207

_/2 _/2 0.1096

_/2 3_/2 0.1233

3.12. Summary

In this chapter the development of a real filter that

produces sharp output correlation peak with a controlled peak

value was presented. Also, it was shown that the energy in

the output correlation plane may be further reduced by the

proper selection of the phases of the correlation output

constraint. The performance of the RMACE filter was examined

for distortion and noise tolerance. It was shown that the

distortion tolerance of the filter can be improved by

increasing the number of training set images. The RMACE

filter was thus shown to have many attractive features and

properties useful for pattern recognition.



CHAPTER4

Real-Valued MVSDF-MACEFilter

Recent developments in the field of distortion invariant

pattern recognition using synthetic discriminant functions

include the minimum variance synthetic discriminant function

(MVSDF) and minimum average correlation energy (MACE) filters.

MVSDF filters are designed to minimize the output noise

variance due to input noise whereas MACE filters are designed

to maximize the correlation peak at the origin. In Chapter 3,

the design of real MACE filters was considered and their

performance studied. In this chapter, the design of real

filters which minimize a performance measure which is a linear

combination of output correlation energy and output variance

due to noise is considered. This filter is referred to as

improved real-valued MVSDF-MACE filters. Simulation studies

are presented to illustrate the performance improvements that

result from the MVSDF-MACE filter.

4.1. Motivation for the Real-Valued MVSDF-MACE Filter

In simulation studies of previous chapters, real MACE

filters designed to minimize the average correlation plane

output energy were found to produce impressive easily

detectable sharp correlation peaks. However, MACE filter have

two drawbacks. First, since the MACE filter design does not

explicitly include noise effects, it has poor noise

84



85

performance. Second, MACE filters are sensitive to non-

training images. Since the MACE filter produces sharp

correlation peaks, which is an indication of edge enhancement,

the distortion tolerance of this filter is poor. That is,

narrow correlation peaks provide easy detection but make the

filter more sensitive to distortions and noise. Thus, broader

correlation peaks would improve the filter's distortion and

noise tolerance.

MVSDF filters overcome these problems of MACE filters.

The MVSDF filter is designed to minimize the output noise

variance due to input noise while satisfying the specified

output at the origin of the correlation plane. However, the

resulting correlation peak may not be sharp enough for easy

detection. Hence, efforts were directed to develop filters

that provided both acceptable noise and distortion tolerance

and easily detectable sharp correlation peaks at the origin.

Sudharasanan, Mahalanobis, and Sundareshan [16] proposed

an improved synthetic discriminant function in the space

domain which gives sharp correlation peaks and better noise

performance simultaneously. The frequency response of this

filter is a complex function. In this chapter , real-valued

MVSDF-MACEfilter which provide better noise and distortion

tolerance than the RMACE filters while providing sharp

correlation peaks is developed.

The real-valued improved MVSDF-MACEfilter is developed

in the discrete frequency domain. The filter development is



discussed in the next section and

presented in the following sections.
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simulation results are

4.2. Real-Valued MVSDF-MACE Filter Desiqn

As mentioned earlier real-valued MVSDF-MACE filter is

designed to satisfy the output constraints at the origin of

the correlation plane while simultaneously minimizing the

output variance due to noise as well as the correlation plane

energy. The filter development in the discrete frequency

domain follows that given in Reference [16] and is described

below.

Let X I, X 2, _., X N, denote N column vectors of dimension d

representing N training images in the discrete frequency

domain. Let the image under test be corrupted by a noise term

n. Hence, the resulting test image can be written as

Xi_ : X i + n. (4.1)

The output of the filter with this test image is given by

HrXi_ = HT(xi + n)

= HrXl + Hrn (4.2)

= Ui + HTn

where H is a real filter vector in the frequency domain andui

is the specified output for the test image X i. Let the noise

vector n be a zero-mean additive, stationary random variable.

Then the mean of the random component H Tn in the output is

zero. The variance of this term is given by
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var{Hrn} = E{HrnnTH}

= HTE{nTn}H • (4.3)

o 2 = HTRn H

where Rn is a dxd covariance matrix of the noise vector n.

The objective of the improved MVSDF-MACE filter is to

minimize the output noise variance in Eq. (4.3) and the

average correlation place output energy. The average

correlation plane energy from Chapter 3 is given by

Eav = H rDH (4.4)

where D is a diagonal matrix with diagonal elements equal to

the samples of the average power spectrum of the training

images. Hence, the compromise measure between the noise

tolerance and the sharpness of the correlation peak can be

written as

C H = (ZlEav + a202

= HT(alD + a2Rn) H
(4.s)

where al and a2 are nonnegative constants chosen to trade-off

between the output noise variance and the output correlation

energy. Hence, minimization of CH minimizes both correlation

energy H rDH as well as noise variance H rRn H _nd would yield

filters with improved noise performance and sharp correlation

peaks. For a I = 0 and _2 > 0, C H is equal to a2o 2 and noise

tolerance will be maximized. On the other hand, fora I > 0
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For other _I and _2 values asharpness will be maximized.

compromise between these two extremes is obtained.

Hence, the problem is to minimize C H in Eq. (4.15)

subject to the constraint given by

XTH= u (4.6)

where X = [XI, X 2..... XN ] r is a dxN data matrix, 'T' denotes the

transpose operation, and u is assumed to be a real N

dimensional output vector. For real training images, the

real-valued improved MVSDF-MACE filter solution vector may be

found using the method of Lagrangian multipliers as was done

in Chapter 3 as

HM_ = (_ID + a2Rn)-IXR{XI(_I D + a2Rn ) -IXR}-I u (4.7)

where X R is the real part of the data matrix X. When

a I = 0, H_ becomes HRHVSDF , is a real-valued frequency domain

MVSDF filter, given by

Hp.MVSDF = R_IXR {X_R_IxR} -1U. (4.8 )

When a 2 = 0. H_ becomes HpJeACE given in Eq. (3.32).

For the special case of white noise, the matrix R n can

be written as
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2
Rn = OnI d (4.9)

2
where o n is the variance of the white noise and I a is an

identity matrix. For this special case, the real-valued

improved filter in Eq. (4.7) may be reduced to

H_ = DcIXR {XaD_IXa} -1 U (4.1o)

where

2
D c = aiD + a2OnI d (4.11)

is a diagonal matrix. Hence, the matrix inversion in Eq.

(4.10) is relatively easy. Next section discusses the

distortion tolerance characteristics of the improved MVSDF-

MACE filter.

4.3. Distortion Tolerance Results

The performance characteristics of the real-valued

improved MVSDF-MACE filter were evaluated using computer

simulation results. As before, two sets of 23 images of MARS

Landscape, Class 1 and Class 2, rotated through angles 1-13

degrees were used to test the filter performance. The images

were of size 128x128 pixels. The rotated images were obtained

using a computer algorithm. For the filter construction, four

images from each of Class 1 and Class 2, rotated through

angles i, 5, 9, and 13 degrees were used. The improved MVSDF-

MACE filter in Eq. (4.7) with different a I and _2 values were

synthesized. White Gaussian noise with a variance of 1.0

which represents a signal-to-noise ration (SNR) of 33 dB was
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used in the filter synthesis. The required correlation output

values were specified as 20 for Class 1 images and i0 for

Class 2 images arbitrarily.

The average correlation plane energy E = HTDH and the

2(HTH) were indicative of filter'soutput noise variance a 2 = o n

the performance. A low average correlation energy with the

specified peak value corresponds to sharper correlation peaks,

a higher correlation plane peak-to-side-lobe ratio (PSR), and

ratio more sensitivity to distortions. On the other hand,

lower output noise variance implies higher tolerance to

distortion and noise with lower correlation plane PSR values.

Table 4.1 presents the average correlation energy (E) and the

output noise variance

combinations.

From the table it

minimum

(02 ) for 8 different _i ands2

can

average correlation

be seen that the real-valued

energy (RMACE) filter which

corresponds to a I = 1 and _2 = 0 achieved the smallest average

correlation plane energy of 0.064 with the output variance of

75.53, whereas the real-valued minimum variance synthetic

discriminant function (RMVSDF) filter, that is, for _i = 0 anda 2 = 1

achieved the smallest output noise variance of 0.66 with the

average correlation energy of 32.0. For other values of_ I

and a 2 the correlation energy and the output noise variance

lie in between these extreme values.
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Real-Valued MVSDF-MACEFilter Performance for
SNR of 33 dB and Desired Output Values at the
Origin: 20 for Class 1 and I0 for Class 2

a I a 2 Average Variance of

Energy the Output

at the Origin

1.00 0.0 0.064 75.53

1.00 1.0 0.065 58.98

1.00 i0.0 0.070 38.34

1.00 i00.0 0.113 19.17

1.00 i000.0 0.360 7.21

0.i0 I000.0 1.264 2.62

0.01 i000.0 4.118 1.15

0.00 1.0 32.000 0.66

For performance comparison of the real-valued improved

MVSDF-MACE filter with that of RMACE and RMVSDF filters,

a I = 1.0 and a 2 = I00 referred to as MMI and _I = 1.0 and

a 2 = i000 referred to as MM2 were considered. Figures 4.1,

4.2, 4.3, and 4.4 present three-dimensional plots of the

output correlation plane intensity with RMACE, MMI, MM2, and

RMVSDF filters, respectively. As can be seen from the plots,

the RMACE filter produces sharp correlation peak at the origin

of the correlation plane with an output noise variance of

75.53. Though the RMVSDF filter achieves tht lowest output

noise variance of 0.66 the correlation plane output of Figure

4.4 shows that the peak is not sharp enough for easy

detection.
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Figure 4.1. Correlation Plane Output Intensity with
the RMACEFilter

Figure 4.2. Correlation Plane Output Intensity with
the MMI Filter
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Figure 4.3. Correlation Plane Output Intensity with
the MM2 Filter

Figure 4.4. Correlation Plane Output Intensity with

the RMVSDF Filter
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From Figures 4.2 and 4.3 it can be seen that the improved

MVSDF-MACEfilters MMI and MM2produce reasonably sharp peaks

with acceptable output variances of 19.17 and 7.21 and average

correlation energies of 0.1132 and 0.3597, respectively.

Thus, the improved MVSDF-MACEfilter reduces the output noise

variance considerably while still maintaining easily

detectable sharp correlation peaks with low sidelobes.

To compare further the RMACE, MMI, MM2, and RMVSDF

filters with respect to distortion tolerance, these filters

were tested against all 26 images for discrimination. As a

measure of the sharpness of the correlation peak, the smallest

slope magnitude of the correlation response between the peak

response and the response at an adjacent pixel and the average

correlation plane energy were found and tabulated. Tables

4.2, 4.3, 4.4, and 4.5 list the correlation plane statistics

for the training images with RMACE, MMI, MM2, and RMVSDF

filters, respectively. It may be seen'that all the training

images when filtered through the RMACE, MMI, and MM2 filters

produced the specified correlation peak output of 20 for Class

1 and i0 for Class 2 images at the origin of the correlation

plane. The correlation peak at the origin was also the

largest peak anywhere in the correlation plane. However, even

though the RMVSDF filter yielded the specified correlation

output at the origin, the largest peak occurred always off

from the center of the plane.
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Table 4.2. Correlation Plane Statistics with the RMACEFilter

Image Specified Peak at Global Average Slope
Output Origin Peak Energy Near

Peak
marsl.l 20.00 20.00 20.00 0.21 17.97
marsl.5 20.00 20.00 20.00 0.23 17.17
marsl.9 20.00 20.00 20.00 0.24 16.63
marsl.13 20.00 20.00 20.00 0.24 18.00
mars2.1 i0.00 i0.00 i0.00 0.19 7.20
mars2.5 i0.00 i0.00 i0.00 0.21 6.90
mars2.9 i0.00 i0.00 I0.00 0.20 7.35
mars2.13 i0.00 i0.00 i0.00 0.21 7.25

II

Table 4.3. Correlation Plane Statistics with the MMI Filter

Image Specified Peak at Global Average Slope

Output Origin Peak Energy Near

Peak

marsl.l 20.00 20.00 20.00 0.35 12.12

marsl.5 20.00 20.00 20.00 0.35 11.19

marsl.9 20.00 20.00 20.00 0.36 10.40

marsl.13 20.00 20.00 20.00 0.35 12.13

mars2.1 i0.00 i0.00 i0.00 0.28 4.60

mars2.5 i0.00 I0.00 i0.00 0.26 4.53

mars2.9 i0.00 i0.00 i0.00 0. _ 4.74

mars2.13 I0.00 i0.00 i0.00 0.27 5.34
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Table 4.4. Correlation Plane Statistics with the MM2 Filter

Image Specified Peak at Global Average Slope
Output Origin Peak Energy Near

Peak
marsl.l 20.00 20.00 20.00 0.76 7.17
marsl.5 20.00 20.00 20.00 0.77 5.40
marsl.9 20.00 20.00 20.00 0.79 4.15
marsl.13 20.00 20.00 20.00 0.81 6.00
mars2.1 i0.00 i0.00 i0.00 0.50 2.99
mars2.5 i0.00 i0.00 i0.00 0.44 2.23
mars2.9 i0.00 i0.00 i0.00 0.45 2.23
mars2.13 I0.00 i0.00 i0.00 0.52 2.77

Table 4.5.
Filter

Correlation Plane Statistics with the RMVSDF

Image Specified Peak at Global Average Slope

Output Origin Peak Energy Near
Peak

marsl.l 20.00 20.00 20.04- 48.03 0.04

marsl.5 20.00 20.00 20.47 51.94 0.03

marsl.9 20.00 20.00 20.62 51.93 0.03

marsl.13 20.00 20.00 20.00 46.96 0.23

mars2.1 i0.00 i0.00 14.09 27.31 0.03

mars2.5 10.00 i0.00 14.02 2?.30 0.06

mars2.9 i0.00 i0.00 14.05 2? 28 0.02

mars2.13 I0.00 i0.00 14.11 27.45 0.01



97

As can be expected, the average correlation plane energy

of the output of the RMACE filter was lower and the

correlation peak slope value higher compared to those of other

filters. Both improved filters were found to yield reasonably

lower correlation energies and higher peak slope values.

Variation in correlation peak slope and average energy values

for different images were much lower for the improved filters

than for the RMACEfilter. Thus, improved MVSDF-MACEfilters

exhibited more distortion tolerance capability.

As mentioned in Chapter 3, it is more likely that the

peak occurs below the specified output value. Hence, for

image classification a predetermined threshold value of

T = 12.0 was used. If the correlation plane peak is above

this value then the image was recognized as Class 1 and

otherwise as Class 2. Figures 4.5 through 4.8 show the global

correlation peak values versus the test image number for all

four filters. It may be seen from Figure 4.5 that three

images of Class 1 have output peak values lower than the

threshold value of T = 12.0. Hence, the recognition rates

with the RMACE filter were 76.9 percent-for Class 1 images and

I00 percent for Class 2 images. Figures 4.6 and 4.7 show I00

percent recognition rates for both classes of images with the

improved MVSDF-MACE filters. Figure 4.8 shows the output

peaks of all the images to be above the threshold value and,

hence, the recognition rates were I00 percent and 0 percent

for Class 1 and Class 2 images, respectively.
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From the results of the above tests, it can be concluded

that an improved MVSDF-MACE filter designed with a proper

choice for a I and a 2 will be capable of providing higher

distortion tolerance than that of _MACE filters. The

correlation sharpness near the peak is reduced, but is still

high enough for easy detection. Thus, by reducing the

sharpness requirements of the correlation peak, the filter's

distortion invariance and noise performance can be improved.

This can also be verified from the discussion of the noise

analysis presented in the next section.

4.4. Noise Analysis

One of the practical issues related to filter synthesis

is the effect of noise in input images. Hence it is necessary

to study the effect of noise on the filter performance. In

this section the performance of th6 improved MVSDF-MACE

filters are compared with those of RMACE and RMVSDF filters in

the presence of noise.

The effect of zero-mean, white Gaussian noise on the

performance of the filters was investigated by studying the

degradation of the filter output with increasing noise power.

The same filters constructed in the previous: section were

used. Ten test images were constructed from the training

images by adding white Gaussian noise to give signal to noise

ratios (SNR) of 20 dB, 15 dB, I0 dB, 5 dB, and 0 dB each with

two different seed values. The noisy images were then passed
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analysis.

and RMVSDF filters
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for noise

Typical three-dimensional plots of the correlation plane

output intensity of a noisy image with a signal to noise ratio

of i0 dB are shown in Figure 4.9 through 4.12. Figure 4.9,

the output of the RMACE filter, shows large sidelobes in

comparison to the correlation plane output without noise as

shown in Figure 4.1. However, comparing the correlation plane

outputs of the improved MVSDF-MACEfilter for noisy images

(Figures 4.10 and 4.11) to those for noiseless images (Figures

4.2 and 4.3) it is noted that the changes are insignificant.

This verifies the noise tolerance capability of the MVSDF-MACE

filter.

The peak value at the origin, the largest peak in the

correlation plane, slope near the correlation peak and average

correlation energy were noted and averaged over all the

training images of each class. The results are summarized in

Tables 4.6, 4.7, 4.8, and 4.9 for RMACE, MMI, MM2, and RMVSDF

filters, respectively.

For the RMACEfilter the average correlation energy for

Class 1 images increased from 0.724 to I_.778 and the

correlation peak slope reduced from 17.05 to 5.17 when the

noise power was increased such that SNR decreased to 0 dB from

20 dB. The same changes were noted for Class 2 images.

However, in the case of the improved MVSDF-MACE filters these

values did not vary significantly. That is, in the case of
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the MMI filter, for the same change in the noise power, the

average correlation energy of Class 1 images varied from 0.458

to 4.711. Also, the correlation peak slope at 0 dB SNR with

the MMI filter was 5.67 compared to 5.17 with the RMACE

filter. Similar results were achieved with the improved

filter MM2. Thus, it shows that the performance of improved

MVSDF-MACEfilter in the presence of noise is better than that

of RMACEfilters.

Further, for the improved MVSDF-MACEfilters, the global

peaks in the correlation plans were found at the center of the

correlation plane, whereas, the global peaks with the RMACE

filter in the presence of noise occurred sometimes away from

the center of the correlation plane. With the same threshold

of T = 12, the training image recognition rates of the RMACE

filter were i00 percent for Class 1 and 80 percent for Class

2 images, whereas, I00 percent training image recognition

rates for both Class 1 and Class 2 images were obtained with

the improved MVSDF-MACE filters.

It may be seen form Table 4.9 that when the noise to the

test image was increased, the correlation plane energy and the

peak slope in the outputs of the RMVSDF filter change very

little. However, as mentioned before the peaks were not

sharp.
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Table 4.6. Noise Analysis with the RMACEFilter

Image Set SNR in dB Correlation Average Slope Near
Peak Energy the Peak

Class 1

20 19.76 0.724 17.05
15 19.43 1.726 16.45
I0 18.43 4.380 14.92
5 16.44 10.060 11.86
0 17.48 19.778 5.17

Class 2

20 9.31 0.480 6.33

15 8.77 1.070 5.40

I0 9.00 2.751 4.02

5 10.08 7.181 5.02

0 15.34 16.637 7.13

Table 4.7. Noise Analysis with the MMI Filter

Image Set SNR in dB Correlation Average Slope Near

Peak Energy the Peak

Class 1

20 19.63 0.458 11.23

15 19.19 0.681 10.80

i0 18.08 1.277 9.85

5 15.84 2.564 8.05

0 12.79 4.711 5.67

Class 2

20 9.60 0.321 4.41

15 9.28 0.450 4.06

i0 8.68 0.826 3.43

5 7.80 1.835 2.24

0 8.45 3.988 3.40
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Table 4.8. Noise Analysis with the MM2 Filter

Image Set SNR in dB Correlation Average Slope Near
Peak Energy the Peak

Class 1

20 19.57 0.776 5.57

15 18.97 0.804 5.43

i0 17.92 0.887 5.09

5 15.59 1.225 4.39

0 11.46 1.546 3.27

Class 2

20 9.69 0.475 2.38

15 9.43 0.495 2.23

I0 8.93 0.568 1.97

5 8.24 0.791 1.63

0 7.16 1.298 i.ii

Table 4.9. Noise Analysis with the RMVSDF Filter

Image Set SNR in dB Correlation Average Slope Near

Peak Energy the Peak

Class 1

20 19.80 47.840 0.08

15 19.29 45.210 0.08

i0 17.93 39.326 0.09

5 15.62 29.621 0.08

0 12.03 18.404 0.09

Class 2

20 13.74 26.542 0.03

15 13.58 25.242 0.03

i0 12.92 23.648 0.03

5 12.03 20.698 0.05

0 10.44 15.591 0.05
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Fiqure 4.9. Correlation Plane Output Intensity with
the RMACE Filter for SNR of lO dB

Figure 4.10. Correlation Plane Output Intensity with

the MMI Filter for SNR of I0 dB
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Figure 4.11. Correlation Plane Output Intensity with

the MM2 Filter for SNR of I0 dB

Figure 4.12. Correlation Plane Output Intensity with

the RMVSDF Filter for SNR of I0 dB
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4.5. Observations

From the results of the above simulation it is noted that

the real-valued improved MVSDF-MACE filter has better

performance in the presence of zero-mean, white Gaussian noise

in comparison with that obtained with the RMACE filter.



CHAPTER5

Real-Valued Space Domain MACE Filter

In previous chapters real-valued filters were developed

in the discrete frequency domain and their performance studied

using computer simulations. In this chapter a real-valued

space domain MACE filter design is developed and its

performance investigated.

5.1. Need for Real-Valued Space Domain MACE Filter

The MACE and RMACE filters are designed in the discrete

frequency domain to minimize the average correlation energy of

the filter so as to achieve sharp correlation peaks [15].

However, since they are designed in the discrete frequency

domain, they minimize circular correlation energy rather than

the linear correlation energy. That is, MACE and RMACE

filters synthesized in the frequency domain minimizes the

aliased version of the linear correlation energy. The

commonly used technique, zero-padding, may be expected to

remedy this aliasing problem. However, MACE filters designed

with zero-padding for the image do not minimize the linear

correlation energy because zero padding constraint is not used

for the filter impulse response.

Sudharsanan, Mahalanobis, and Sundareshan [16] proposed

the MACE filter design in the space domain (SMACE) to overcome

this problem. In their design the linear correlation values

II0
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are computed in the space domain thereby reducing the linear

correlation energy. Because of the powerful capability of

optical lenses to generate the two-dimensional Fourier

transform of an object, filters are generally implemented

using frequency plane correlator. The frequency response of

the SMACEfilter is a complex function_ As mentioned in the

previous chapter complex filters are difficult to implement

optically with currently available technology. Hence, a

design procedure to synthesize a real-valued space domain MACE

filter is proposed. Section 5.2 presents the development of

the filter and the following sections discuss the results of

computer simulations.

5.2. Filter Development

To facilitate easy implementation of MACE filter using

currently available spatial light modulators, a real-valued

space domain MACE (RSMACE) filter design is developed. For

realizing purely real filter functions, two types of methods

are possible. The first method is to constrain the filter

function to be purely real in the frequency domain. This

approach is useful if the filter is synthesized in the

frequency domain. The second method is to n_ke use of the

symmetry property of the two-dimensional fourier transform of

an object. That is, the filter is designed in the space

domain such that the two-dimensional filter coefficients

posses centro conjugate symmetry with respect to the origin of

the filter object. The RSMACE filter is designed using the



second method for

frequency response.
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realizing a filter with purely real

In the development of the RSMACEfilter the notations

similar to those employed in Reference [16] are used. That

is, the training set is assumed to contain N images each with

d pixels. The i th training image is denoted by a one

dimensional vector x£ of size d×l, obtained by scanning the

rows of the two-dimensional image given as:

x i = [xi(1),xi(2), .... ,xi(d)] T.

The size of the image is assumed to be M×M and so d = M 2.

Similarly the filter of the same size is denoted by a d×l

vector h. The linear correlation image of the filter with the

signal x£ will be of size K = (2M-I) 2. Let g£ be the K

dimensional correlation vector obtained by correlating the

filter h with the image x£. This may be expressed in matrix

form as

g_ =S_h (5ol)

where S£ is a real matrix of size K×dobtained from the signal

x i as
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(5.2)

with (2M-I)×Mreal matrices _I£, 1 = 1,2, ...... ,M, given by

.°.

°..

: "°.

X i(M(l-l) +I) X i(M(l-l) +2)

X i (M(I-I) +2)

: °..

x i (M(I-I) +M) 0

o x_ (M(I-z) ÷z)

x i(M(l-l)+l) xi(M(I-Z)+2)

... xi(M(l-l) +M9 , (5.3)

x i (M(I-I) +M} 0

: {

0

i=I,2 ..... ,N.

In order to synthesize a purely real filter function, the

filter is constrained to have centro conjugate symmetry as

described below. Let h(nl,n2) of size MXM be a two-

dimensional inverse fourier transform of a real function

H(fl, f2) as

_(nl,n2) = f-l{_(_,_) }. (5.4)

Since H(fl,f2) is constrained to be real, h will posses centro

conjugate symmetry satisfying the following condition:
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m

]5(n 1,n 2) = h °(M+2-n 1,M+2-n 2) .
(5.s)

Figure 5.1 shows a two-dimensional image of size 4×4 which

possess centro conjugate symmetry. The independent entries

are enclosed by the dotted lines.

h

h h h
11 II la

h h h
I1 Sill li

h h h
:11 Sl ,_8

I....................................:?............... a

h h h
I ! l!4 Ill

h

h
14

h
81

h
II

Figure 5.1. Centro Conjugate Symmetric Image

Let a two-dimensional array hc be defined as shown in Figure

5.2.

o.

h
Q

h h h
I1 II 18

h h h
R1 81 13

h h h
Sl 88 t$

h
14

Figure 5.2. Image hc
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Then from Eq.(5.5) and Figures (5.1) and (5.2) it is clear

that the array h of size M×M can be constructed from the

reduced size object hc" Let h' be a one-dimensional filter

vector of size D, where for even values of M, D is given by

M 2
D = --+2. (5.6)

2

Then the independent vector h' is given by

h / = [h(1) h(2) .......... h(M$1)

h (M+I) h (M+2) ...... h (M+M_

M-I) M+M9
M-I) M+I) .h( (_h((_ ......

(s.7)

Using this symmetry property of h, the correlation vector g£

in Eq.(5.1) can be written in terms of h' as

gi = S_ h/ (5.8)

where S'£, i=i,2, .... N, is a K×Dmatrix which may be obtained

from Eq.(5.2) as follows. Let #i, i=i,2, .... ,d, be column

vectors of S i as

S i = [_ 4_2 ... _], i=I,2 ...... N. (5.9)

Then S' i of size K×Dmay be written as
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s': [y_y,Y3 Y,_2YK_2.,]. i:i.2.....

where 71, is a matrix of size K×(M/2+I) given by

3 2

(s.10)

(s.11)

7i, i = 2,3, ..... ,M/2 are KXMsized matrices given by

y_ = [(@(i__),÷_+(l,(u.__1,x_),(@(i__),,.2+@cx._-i).u),
(5.m2)

and 7M/2+I is a KX(M/2+l)sizematrix given by

y__-÷_= [,I,({),,+_.¢q,(__,,,÷_+(l,({_,,,).¢_c__,,,._+,I,(_.,,,_,),
2

.... ¢4,(_),,___-+,I,(__-),,.__-._)_2 _ '@c__=.-_"_-÷u..],..

(s.J.3)

The objective of the design is to find a space domain

filter h' that minimizes the average correlation energy of the

correlation plane. The correlation plane energy of the ith

image is given by

K

E_ = _ I g_(n) I_'
n-1

= _,'s','s',la_.

(s.14)

Hence, the average correlation energy over all training images

xi, i=l,2,...,N, is given by
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mav -

N

i-i

= hITRih !

(s.15)

where R' is a D×D symmetric matrix given by

N

R'- I
Ni.1

(5.16)

The output constraint for the filter h is

x_h = u i,

X_h= u

i=I,2, . . .,N

(5.17)

where X s is a d×N data matrix in space domain and u is an N

dimensional output vector. Let

xI= [_i _2 _] (5.18)

where _i, i=l,2,...,d, are column vectors of size N.

let _ be a DXN data matrix defined as

Also,

lIT= [Sx 82 8, ...8u128ui,÷x]. (5.19)

where 61, is a matrix of size N×(M/2+I) given by

_I = [_i,(_2+nu),(_3÷nu-_),...,(n_÷n_.2)_,n_._], (5.20)



6i, i = 2,3, ..... ,M/2 are N×M sized matrices given by

I = [ (qc_l)x÷,+qca< i)x÷,), (_(i,)_,÷2+"1 c_÷, t)÷,v) ,

(_ (_-I)x÷3+_ (x÷2-_)x÷M-1....... (_ (_-1)x+x+_ (x÷1-_)x÷2]
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(5.21)

and 6M/2+ 1 is a NX(M/2+l)sizematrix given by

Then Eq.(5.17) can be written in terms of H as

TTTh; = U. (5.23)

The real MACE filter h" which minimizes the average

correlation energy Ear in Eq.(5.15) while satisfying the

output constraints in Eq.(5.23) may be found using the method

of Lagrangian multipliers. The solution vector h" is

h'= a'*_(_a'*_)lu. (5.24)

The SMACE filter solution vector from Reference [16] is

given by

(5.25)

It may be noted from Eq.(5.25) that the size of the R matrix

is d×d= M2XM 2. On the other hand from Eq. (5.24), the size of

the matrix R' is D×D = (M2/2+2)×(M2/2+2) = M2/2×M2/2. The

complexity of a matrix inversion is generally proportional to
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the square of the size of the matrix. Hence, the complexity

involved in the inversion of the matrix R' is much lower

compared to that of R. For example, when the images of size

16×16 are used the size of the R matrix is 256×256, whereas

the R" matrix is only 130×130. Further, the number of RSMACE

filter coefficients to be determined is (M2/2+2) whereas for

SMACE filter it is M2. Thus, like the RMACE filter, the

realization of RSMACEfilters in Eq.(5.24) will result in a

substantial reduction in the complexity involved in the filter

synthesis, thereby requiring less memory and cpu time.

5.3. Alqorithm for the RSMACE Filter Synthesis

An algorithm for the RSMACE filter synthesis

summarized below.

i.

•

3.

is

From the given training vector images xi, i=l,2,...N,

setup the matrix S i from Eqs.(5.2) and (5.3).

Compute the matrix S i' from Eqs.(5.9)-(5.13).

Obtain the matrix R' such that

H

R/_ 1
N _ "q/18/'t"

i=l

•

So

From the training images form the data matrix X s as

X s = [Xl, x 2, ..... ,xN].

Obtain the reduced data matrix N from Eqs.(5.18)-(5-22).
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Using the specified correlation "output vector u, the

inverse of the matrix R' and the matrix H, construct the

RSMACE filter as

h I = R/-III(II_'R/-III) -I u.

5.4. Simulation Results

The new real-valued space domain MACE (RSMACE) filter was

synthesized to discriminate between two images of the

landscape of Mars, referred to as Class 1 and Class 2 images.

Nine images of each class, rotated through one to nine

degrees, totaling 18 images, were used to test the filter

performance. Each image contained 16 ×16 pixels. The RSMACE

filter was synthesized with five images of each class rotated

through angles i, 3, 5, 7, and 9. The correlation outputs at

the origin were specified to be 20 and i0 for Class 1 and

Class 2 images, respectively.

For this particular example, the number of SMACE filter

coefficients were 256 and the cpu time required to synthesize

the filter in VAX was i0 minutes. On the other hand for the

RSMACE filter the number of filter coefficients were reduced

to 130 and the cpu time was only 40 seconds. :he performance

of the RSMACE filter is demonstrated by the three-dimensional

plot of the correlation plane output as shown in Figure 5.3.

Even though the correlation plane contains side lobes, the

peak at the origin is sharp enough for easy detection. For

comparison, the SMACE filter in Eq.(5.21) was also synthesized
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Figure 5.3. Correlation Plane Output Intensity with
the RSMACE Filter

Figure 5.4. Correlation Plane Output Intensity with
the SMACE Filter
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using the same training images. The corresponding three-

dimensional correlation plane output is shown in Figure 5.4.

Comparing Figures 5.3 and 5.4, it can be seen that the

sharpness of the correlation peak with the RSMACEfilter is

slightly less than that of the SMACE filter but is quite

satisfactory for recognition purposes. The RSMACE filter

produces more sidelobes in the correlation plane output

compared to that obtained with the SMACE filter. However,

there is a significant amount (93 percent) of saving in

computation time required for the filter synthesis.

All the 18 images were then tested using both The RSMACE

and SMACEfilters for discrimination. Tables 5.1 and 5.2 show

the simulation results for training images with RSMACEand

SMACEfilters respectively. As can be seen from the tables,

for all ten training images the specified correlation peaks

were achieved. For further comparison, the output correlation

plane energies for all 18 images with both RSMACE filter,

denoted by '+' and SMACE filter denoted by '×' is shown in

Figure 5.5. From the figure it may be noted that the RSMACE

filter results slightly higher energy in the correlation

plane ....

A fixed threshold T = 12 was chosen to classify images

between classes 1 and 2. That is, if the correlation peak

anywhere in the output correlation" plane exceeds this

threshold, the test object is classified as object that

belongs to Class 1 otherwise Class 2. Plots of the highest
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Table 5.1. Correlation Plane Values with the RSMACE Filter

Image Specified Intensity Largest Peak Average

Output at the Peak Location Energy

at the Origin

Origin

marsl.l 20.00 20.00 20.00 (0,0) 6.88

marsl.3 20.00 20.00 20.00 (0,0) 5.76

marsl.5 20.00 20.00 20.00 (0,0) 5.39

marsl.7 20.00 20.00 20..00 (0,0) 5.55

marsl.9 20.00 20.00 20.00 (0,0) 5.74

mars2.1 i0.00 i0.00 i0.00 (0,0) 3.68

mars2.3 i0.00 i0.00 i0.00 (0,0) 2.98

mars2.5 i0.00 i0.00 I0.00 (0,0) 2.77

mars2.7 i0.00 i0.00 i0.00 (0,0) 2.90

mars2.9 i0.00 i0.00 i0.00 (0,0) 2.98
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Table 5.2. Correlation Plane Values with the SMACEFilter

Image Specified Intensity Largest Peak Average
Output at the Peak Location Energy
at the Origin
Origin

marsl.l 20.00 20.00 20.00 (0,0) 3.46
marsl.3 20.00 20.00 20..00 (0,0) 2.81
marsl.5 20.00 20.00 20.00 (0,0) 2.66
marsl.7 20.00 20.00 20.00 (0,0) 2.79
marsl.9 20.00 20.00 20.00 (0,0) 2.90

mars2.1 i0.00 I0.00 i0.00 (0,0) 2.00
mars2.3 i0.00 i0.00 i0.00 (0,0) 1.59
mars2.5 i0.00 i0.00 i0.00 (0,0) 1.47
mars2.7 I0.00 i0.00 i0.00 (0,0) 1.55
mars2.9 I0.00 I0.00 I0.00 (0,0) 1.61
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peak in the correlation plane versus th@ test image number are

shown in Figures 5.6 and 5.7 for RSMACEand SMACE filters

respectively. As can be seen from the figures, both RSMACE

and SMACEfilters achieved i00 percent recognition rates.

5.5. Observations

From the results of the tests it can be concluded that

the performance of the RSMACE filter is almost as good as that

of the SMACE filter. The frequency response of the RSMACE

filter is purely real and, hence, currently available spatial

light modulators can be used to optically implement the filter

without the use of complicated holograms. Further the

computation involved in the synthesis of the RSMACE filter is

lower than 50 percent of that of the SMACE filter.
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CHAPTER 6

Conclusions and Recommendations

The research leading to this report was concerned with

the recognition of objects/patterns using optical correlators.

The main objective was to develop real-valued filters for

pattern recognition which could be implemented using currently

available spatial light modulators.

6.1. Conclusions of this Research

A real-valued minimum average correlation energy (MACE)

filter was developed. The performance of this filter was

studied and compared with that of the MACE filter using

computer simulations. It was found that the distortion

tolerance of the real-valued MACE filter could be improved by

choosing more number of training images in the filter

synthesis. In comparison with the MACE filter, the real-

valued MACE filter produces slightly smaller correlation

peaks, however, the sharpness of the peak was good enough to

facilitate easy detection.

In order to make the real-valued MACE filter robust

against the intensity scaling, normalization'oy the average

value of the test object was done. The performance of the

normalized filter was found to be independent of the scaling

factor. The performance of this filter was also studied when

the test image is corrupted with white Gaussian noise. The

129
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filter was found to tolerate significant amount of noise (SNR

= i0 dB).

The real-valued MACEfilter was tested on the effect of

input bias. For the input bias correction, an additional

constraint was needed to be imposed, namely, the filter

coefficient at the origin should be zero. It was found that

the input bias did not affect the output in the correlation

plane of the real-valued MACE filter even with no input bias

correction. The real-valued MACEfilter for complex specified

output values was developed. A procedure was formulated to

choose optimally the phase of the output values such that the

least correlation energy is obtained.

A design procedure for the real-valued improved minimum

variance synthetic discriminant function (MVSDF)-MACE filter

which minimizes both correlation plane energy and the output

variance due to input noise was proposed. The simulation

studies to compare this filter with the real-valued MVSDFand

MACE filters were carried out. These studies exhibited that

the real-valued MVSDF-MACEfilter provides both tolerance to

distortion and noise and sharp correlation peaks.

In order to minimize the linear correlation energy when

the filter is implemented in continues'frequency domain, the

design of a real-valued space domain MACE (SMACE) filter was

considered and its performance was compared with that of the

SMACE filter. Though the correlation plane energy was

slightly higher than that of the SMACE filter, it did not
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produce high sidelobes. In addition it was shown that the

synthesis of real SMACE filter was less _ computationally

intensive than that of the complex SMACEfilter with respect

to the computation efficiency. Further, its real nature makes

it easily implementable using available spatial light

modulators.

6.2. Recommendations for Future Research

As mentioned above, real-valued filters are easily

implementable using currently available spatial light

modulators. In addition they give significant savings in the

computation time and the computer memory as compared to that

of complex filters. There are, however, certain limitations

and possible extensions to this research. Some of them are

described below.

Not all spatial light modulators are capable of providing

real response. Many, such as deformable mirror devices,

provide coupled magnitude-phase responses. Hence, the design

of MACE filters to match the physical characteristics of the

available spatial light modulators needs to be developed.

When the specified output was complex, the real-valued MACE

filter was shown to reduce the correlatio[_ plane energy

further. But the reduction in the energy depends on the

training images used in the filter construction. Hence, a

systematic procedure for the selection of training images

needs to be explored.
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In a multi-class pattern recognition problem, the pre-

determined threshold values are used for pattern

classification. However, the threshold values depend on the

magnitude of the user specified output values. Thus, future

work needs to be done for the selection of the output

magnitudes by maximizing some criteria like signal-to-noise

ratio.

Combining the concepts of minimum variance and minimum

correlation energy, filters were designed to have acceptable

tolerance to noise and distortions while providing sharp

correlation peaks at the origin of the correlation plane.

However, the performance of these filters critically depends

on the constants, _i and _2- More work needs to be done for

the selection of these constants.

Recently much work has been carried out to design optical

correlators to estimate the orientation of an object. Since

MACE filters guarantee correlation peaks at the origin of the

correlation plane, the ability of these filters for the

positional parameter estimation needs to be evaluated.
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